Sequential Monte Carlo Methods for Nonlinear Discrete-Time Filtering (Synthesis Lectures on Signal Processing)

Marcelo G.S. Bruno

  • 出版商: Morgan & Claypool
  • 出版日期: 2013-01-01
  • 售價: $1,570
  • 貴賓價: 9.5$1,492
  • 語言: 英文
  • 頁數: 100
  • 裝訂: Paperback
  • ISBN: 1627051198
  • ISBN-13: 9781627051194
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

In these notes, we introduce particle filtering as a recursive importance sampling method that approximates the minimum-mean-square-error (MMSE) estimate of a sequence of hidden state vectors in scenarios where the joint probability distribution of the states and the observations is non-Gaussian and, therefore, closed-form analytical expressions for the MMSE estimate are generally unavailable. We begin the notes with a review of Bayesian approaches to static (i.e., time-invariant) parameter estimation. In the sequel, we describe the solution to the problem of sequential state estimation in linear, Gaussian dynamic models, which corresponds to the well-known Kalman (or Kalman-Bucy) filter. Finally, we move to the general nonlinear, non-Gaussian stochastic filtering problem and present particle filtering as a sequential Monte Carlo approach to solve that problem in a statistically optimal way. We review several techniques to improve the performance of particle filters, including importance function optimization, particle resampling, Markov Chain Monte Carlo move steps, auxiliary particle filtering, and regularized particle filtering. We also discuss Rao-Blackwellized particle filtering as a technique that is particularly well-suited for many relevant applications such as fault detection and inertial navigation. Finally, we conclude the notes with a discussion on the emerging topic of distributed particle filtering using multiple processors located at remote nodes in a sensor network. Throughout the notes, we often assume a more general framework than in most introductory textbooks by allowing either the observation model or the hidden state dynamic model to include unknown parameters. In a fully Bayesian fashion, we treat those unknown parameters also as random variables. Using suitable dynamic conjugate priors, that approach can be applied then to perform joint state and parameter estimation. Table of Contents: Introduction / Bayesian Estimation of Static Vectors / The Stochastic Filtering Problem / Sequential Monte Carlo Methods / Sampling/Importance Resampling (SIR) Filter / Importance Function Selection / Markov Chain Monte Carlo Move Step / Rao-Blackwellized Particle Filters / Auxiliary Particle Filter / Regularized Particle Filters / Cooperative Filtering with Multiple Observers / Application Examples / Summary

商品描述(中文翻譯)

在這些筆記中,我們介紹了粒子過濾作為一種遞迴重要性抽樣方法,該方法在狀態與觀測的聯合機率分佈為非高斯的情況下,近似隱藏狀態向量序列的最小均方誤差(MMSE)估計,因此通常無法獲得MMSE估計的封閉形式解析表達式。我們以回顧貝葉斯方法在靜態(即時間不變)參數估計中的應用開始這些筆記。接下來,我們描述了在線性高斯動態模型中序列狀態估計問題的解決方案,這對應於著名的卡爾曼(Kalman)濾波器(或卡爾曼-布基(Kalman-Bucy)濾波器)。最後,我們轉向一般的非線性、非高斯隨機過濾問題,並將粒子過濾呈現為一種統計最優的序列蒙地卡羅方法來解決該問題。我們回顧了幾種提高粒子濾波器性能的技術,包括重要性函數優化、粒子重抽樣、馬可夫鏈蒙地卡羅移動步驟、輔助粒子過濾和正則化粒子過濾。我們還討論了拉奧-布萊克威爾化粒子過濾作為一種特別適合於許多相關應用(如故障檢測和慣性導航)的技術。最後,我們以對於分散式粒子過濾的討論作結,該方法使用位於傳感器網絡遠端節點的多個處理器。整個筆記中,我們經常假設一個比大多數入門教科書更一般的框架,允許觀測模型或隱藏狀態動態模型包含未知參數。以完全貝葉斯的方式,我們將這些未知參數也視為隨機變數。使用合適的動態共軛先驗,該方法可以應用於進行聯合狀態和參數估計。

目錄:引言 / 靜態向量的貝葉斯估計 / 隨機過濾問題 / 序列蒙地卡羅方法 / 抽樣/重要性重抽樣(SIR)濾波器 / 重要性函數選擇 / 馬可夫鏈蒙地卡羅移動步驟 / 拉奧-布萊克威爾化粒子濾波器 / 輔助粒子濾波器 / 正則化粒子濾波器 / 多觀察者的合作過濾 / 應用範例 / 總結