Bayesian Signal Processing: Classical, Modern, and Particle Filtering Methods (Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications and Control)
暫譯: 貝葉斯信號處理:經典、現代與粒子濾波方法(自適應與認知動態系統:信號處理、學習、通信與控制)
James V. Candy
- 出版商: Wiley
- 出版日期: 2016-07-12
- 定價: $4,400
- 售價: 9.0 折 $3,960
- 語言: 英文
- 頁數: 640
- 裝訂: Hardcover
- ISBN: 1119125456
- ISBN-13: 9781119125457
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存=1)
買這商品的人也買了...
商品描述
Presents the Bayesian approach to statistical signal processing for a variety of useful model sets
This book aims to give readers a unified Bayesian treatment starting from the basics (Baye’s rule) to the more advanced (Monte Carlo sampling), evolving to the next-generation model-based techniques (sequential Monte Carlo sampling). This next edition incorporates a new chapter on “Sequential Bayesian Detection,” a new section on “Ensemble Kalman Filters” as well as an expansion of Case Studies that detail Bayesian solutions for a variety of applications. These studies illustrate Bayesian approaches to real-world problems incorporating detailed particle filter designs, adaptive particle filters and sequential Bayesian detectors. In addition to these major developments a variety of sections are expanded to “fill-in-the gaps” of the first edition. Here metrics for particle filter (PF) designs with emphasis on classical “sanity testing” lead to ensemble techniques as a basic requirement for performance analysis. The expansion of information theory metrics and their application to PF designs is fully developed and applied. These expansions of the book have been updated to provide a more cohesive discussion of Bayesian processing with examples and applications enabling the comprehension of alternative approaches to solving estimation/detection problems.
The second edition of Bayesian Signal Processing features:
- “Classical” Kalman filtering for linear, linearized, and nonlinear systems; “modern” unscented and ensemble Kalman filters: and the “next-generation” Bayesian particle filters
- Sequential Bayesian detection techniques incorporating model-based schemes for a variety of real-world problems
- Practical Bayesian processor designs including comprehensive methods of performance analysis ranging from simple sanity testing and ensemble techniques to sophisticated information metrics
- New case studies on adaptive particle filtering and sequential Bayesian detection are covered detailing more Bayesian approaches to applied problem solving
- MATLAB® notes at the end of each chapter help readers solve complex problems using readily available software commands and point out other software packages available
- Problem sets included to test readers’ knowledge and help them put their new skills into practice Bayesian
Signal Processing, Second Edition is written for all students, scientists, and engineers who investigate and apply signal processing to their everyday problems.
商品描述(中文翻譯)
介紹貝葉斯方法在統計信號處理中的應用,涵蓋多種有用的模型集
本書旨在為讀者提供一個統一的貝葉斯處理,從基礎(貝葉斯定理)開始,到更高級的內容(蒙地卡羅取樣),並發展到下一代基於模型的技術(序列蒙地卡羅取樣)。本次修訂版新增了一章“序列貝葉斯檢測”,以及一個關於“集成卡爾曼濾波器”的新部分,並擴展了案例研究,詳細說明了貝葉斯在各種應用中的解決方案。這些研究展示了貝葉斯方法如何應用於現實世界的問題,並包含詳細的粒子濾波器設計、自適應粒子濾波器和序列貝葉斯檢測器。除了這些主要發展外,還擴展了多個部分,以“填補”第一版的空白。在這裡,粒子濾波器(PF)設計的度量標準,強調了經典的“合理性測試”,導向集成技術,作為性能分析的基本要求。信息理論度量的擴展及其在PF設計中的應用得到了充分發展和應用。本書的擴展已更新,以提供更具凝聚力的貝葉斯處理討論,並通過示例和應用使讀者理解解決估計/檢測問題的替代方法。
《貝葉斯信號處理,第二版》的特色包括:
- 針對線性、線性化和非線性系統的“經典”卡爾曼濾波;“現代”的無味濾波和集成卡爾曼濾波器;以及“下一代”貝葉斯粒子濾波器
- 結合基於模型的方案的序列貝葉斯檢測技術,應用於各種現實世界的問題
- 實用的貝葉斯處理器設計,包括從簡單的合理性測試和集成技術到複雜的信息度量的全面性能分析方法
- 涵蓋自適應粒子濾波和序列貝葉斯檢測的新案例研究,詳細說明了更多貝葉斯方法在應用問題解決中的應用
- 每章結尾的 MATLAB® 註解幫助讀者使用現成的軟體命令解決複雜問題,並指出其他可用的軟體包
- 包含問題集以測試讀者的知識,幫助他們將新技能付諸實踐
信號處理,第二版 是為所有研究和應用信號處理於日常問題的學生、科學家和工程師而寫的。