Regression Models for Time Series Analysis
暫譯: 時間序列分析的迴歸模型
Benjamin Kedem, Konstantinos Fokianos
- 出版商: Wiley
- 出版日期: 2002-08-19
- 售價: $1,070
- 貴賓價: 9.8 折 $1,049
- 語言: 英文
- 頁數: 360
- 裝訂: Hardcover
- ISBN: 0471363553
- ISBN-13: 9780471363552
已絕版
買這商品的人也買了...
-
$600$570 -
$680$578 -
$550$468 -
$450$351 -
$620$527 -
$750$638 -
$750$735 -
$650$553 -
$760$600 -
$590$466 -
$690$538 -
$720$562 -
$720$569 -
$620$490 -
$560$476 -
$399CCNP Self-Study: Building Cisco Remote Access Networks (BCRAN), 2/e (Hardcover)
-
$2,370$2,252 -
$399CCNP Self-Study : Building Scalable Cisco Internetworks (BSCI), 2/e
-
$680$537 -
$2,280$2,166 -
$480$408 -
$780$663 -
$650$514 -
$1,615CCNA Cisco Certified Network Associate Study Guide, 5/e (640-801)
-
$480$408
相關主題
商品描述
Regression methods have been an integral part of time series analysis for over a century. Recently, new developments have made major strides in such areas as non-continuous data where a linear model is not appropriate. This book introduces the reader to newer developments and more diverse regression models and methods for time series analysis.
Accessible to anyone who is familiar with the basic modern concepts of statistical inference, Regression Models for Time Series Analysis provides a much-needed examination of recent statistical developments. Primary among them is the important class of models known as generalized linear models (GLM) which provides, under some conditions, a unified regression theory suitable for continuous, categorical, and count data.
The authors extend GLM methodology systematically to time series where the primary and covariate data are both random and stochastically dependent. They introduce readers to various regression models developed during the last thirty years or so and summarize classical and more recent results concerning state space models. To conclude, they present a Bayesian approach to prediction and interpolation in spatial data adapted to time series that may be short and/or observed irregularly. Real data applications and further results are presented throughout by means of chapter problems and complements.
Notably, the book covers:
- Important recent developments in Kalman filtering, dynamic GLMs, and state-space modeling
- Associated computational issues such as Markov chain, Monte Carlo, and the EM-algorithm
- Prediction and interpolation
- Stationary processes
Table of Contents
Dedication.
Preface.
Times Series Following Generalized Linear Models.
Regression Models for Binary Time Series.
Regression Models for Categorical Time Series.
Regression Models for Count Time Series.
Other Models and Alternative Approaches.
State Space Models.
Prediction and Interpolation.
Appendix: Elements of Stationary Processes.
References.
Index.
商品描述(中文翻譯)
對於時間序列分析中最新的迴歸方法的全面回顧
迴歸方法在時間序列分析中已經佔據了超過一個世紀的重要地位。最近,新的發展在非連續數據等領域取得了重大進展,這些領域中線性模型並不適用。本書向讀者介紹了最新的發展以及更具多樣性的迴歸模型和時間序列分析方法。
本書對於熟悉基本現代統計推斷概念的任何人都易於理解,《時間序列分析的迴歸模型》提供了對近期統計發展的迫切檢視。其中最重要的是一類稱為廣義線性模型(generalized linear models, GLM)的模型,該模型在某些條件下提供了一個統一的迴歸理論,適用於連續、類別和計數數據。
作者系統性地將GLM方法擴展到時間序列,其中主要數據和協變數數據都是隨機的並且具有隨機依賴性。他們向讀者介紹了過去三十年來發展的各種迴歸模型,並總結了有關狀態空間模型的經典和較新結果。最後,他們提出了一種貝葉斯方法,用於對可能短暫和/或不規則觀察的時間序列進行預測和插值。全書通過章節問題和補充內容展示了真實數據應用和進一步結果。
值得注意的是,本書涵蓋了:
- 卡爾曼濾波、動態GLM和狀態空間建模的重要近期發展
- 相關的計算問題,如馬可夫鏈、蒙地卡羅和EM算法
- 預測和插值
- 平穩過程
目錄
致謝。
前言。
遵循廣義線性模型的時間序列。
二元時間序列的迴歸模型。
類別時間序列的迴歸模型。
計數時間序列的迴歸模型。
其他模型和替代方法。
狀態空間模型。
預測和插值。
附錄:平穩過程的要素。
參考文獻。
索引。