Time Series Analysis and Its Applications: With R Examples
暫譯: 時間序列分析及其應用:以 R 範例為例
Shumway, Robert H., Stoffer, David S.
相關主題
商品描述
This 5th edition of this popular graduate textbook, presents a balanced and comprehensive treatment of both time and frequency domain methods with accompanying theory. It includes numerous examples using nontrivial data illustrate solutions to problems such as discovering natural and anthropogenic climate change, evaluating pain perception experiments using functional magnetic resonance imaging, and monitoring a nuclear test ban treaty. The R package 'astsa' has had major updates and the text will reflect those updates. In general, the graphics have been improved. New topics include random number generation, modeling and fitting predator-prey interactions, more emphasis on structural models, testing for linearity, discussion of EM algorithm is more extensive, Bayesian analysis of state space models and MCMC is more extensive (including new scripts in astsa), particle methods are introduced, stochastic volatility coverage is expanded, changepoint detection is introduced (new topic).
The book is designed as a textbook for graduate level students in the physical, biological, and social sciences and as a graduate level text in statistics. Some parts may also serve as an undergraduate introductory course. Theory and methodology are separated to allow presentations on different levels. In addition to coverage of classical methods of time series regression, ARIMA models, spectral analysis and state-space models, the text includes modern developments including categorical time series analysis, multivariate spectral methods, long memory series, nonlinear models, resampling techniques, GARCH models, ARMAX models, stochastic volatility, wavelets, and Markov chain Monte Carlo integration methods.
This edition includes R code for each numerical example in addition to Appendix R, which provides a reference for the data sets and R scripts used in the text in addition to a tutorial on basic R commands and R time series. An additional file is available on the book's website for download, making all the data sets and scripts easy to load into R.
商品描述(中文翻譯)
這本受歡迎的研究生教科書的第五版,對時間域和頻率域方法及其理論進行了平衡且全面的處理。它包含了許多使用非平凡數據的範例,說明了如何解決如發現自然和人為氣候變化、使用功能性磁共振成像評估疼痛感知實驗,以及監測核試驗禁令條約等問題。R 套件 'astsa' 已經進行了重大更新,文本將反映這些更新。一般來說,圖形已經得到了改善。新主題包括隨機數生成、捕食者-獵物互動的建模與擬合、對結構模型的更多強調、線性檢驗、對 EM 演算法的討論更加廣泛、狀態空間模型的貝葉斯分析和 MCMC 的內容更加豐富(包括 astsa 中的新腳本)、引入粒子方法、擴展隨機波動的覆蓋範圍、引入變更點檢測(新主題)。
本書旨在作為物理、生物和社會科學研究生的教科書,以及統計學的研究生教材。某些部分也可以作為本科生的入門課程。理論和方法論被分開,以便在不同層次上進行展示。除了涵蓋經典的時間序列回歸、ARIMA 模型、頻譜分析和狀態空間模型外,文本還包括現代發展,包括類別時間序列分析、多變量頻譜方法、長記憶序列、非線性模型、重抽樣技術、GARCH 模型、ARMAX 模型、隨機波動、小波和馬爾可夫鏈蒙地卡羅積分方法。
本版包括每個數值範例的 R 代碼,此外還有附錄 R,提供文本中使用的數據集和 R 腳本的參考,以及基本 R 命令和 R 時間序列的教程。書籍網站上還提供了一個額外的文件可供下載,使所有數據集和腳本易於加載到 R 中。
作者簡介
作者簡介(中文翻譯)
羅伯特·H·香梅是加州大學戴維斯分校的統計學名譽教授。他是美國統計協會的會士,也是國際統計學會的成員。他於1986年獲得美國統計協會的傑出統計應用獎,並於1992年獲得傳染病中心統計獎;這兩個獎項均是因為他在時間序列應用方面的聯合論文。他還是Prentice-Hall出版的應用時間序列分析教科書的作者,並曾擔任預測期刊的部門編輯及美國統計協會期刊的副編輯。
大衛·S·斯托佛是匹茲堡大學的統計學教授。他是美國統計協會的會士,並對類別時間序列的分析做出了開創性貢獻。大衛於1989年因分析嬰兒睡眠狀態循環中出現的類別時間序列的聯合論文而獲得美國統計協會的傑出統計應用獎。他目前是預測期刊的部門編輯及統計數學年刊的副編輯。他曾擔任國家科學基金會數學科學部的計畫主任,以及美國統計協會期刊的副編輯。