Vector Generalized Linear and Additive Models: With an Implementation in R (Springer Series in Statistics)
暫譯: 向量廣義線性與加性模型:R實作(斯普林格統計系列)
Thomas W. Yee
- 出版商: Springer
- 出版日期: 2015-09-14
- 售價: $6,310
- 貴賓價: 9.5 折 $5,995
- 語言: 英文
- 頁數: 589
- 裝訂: Hardcover
- ISBN: 1493928171
- ISBN-13: 9781493928170
-
相關分類:
R 語言、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
This book presents a greatly enlarged statistical framework compared to generalized linear models (GLMs) with which to approach regression modelling. Comprising of about half-a-dozen major classes of statistical models, and fortified with necessary infrastructure to make the models more fully operable, the framework allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole.
Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. However, GLMs are not flexible enough to cope with the demands of practical data analysis. And data-driven GLMs, in the form of generalized additive models (GAMs), are also largely confined to the exponential family. The methodology here and accompanying software (the extensive VGAM R package) are directed at these limitations and are described comprehensively for the first time in one volume. This book treats distributions and classical models as generalized regression models, and the result is a much broader application base for GLMs and GAMs.
The book can be used in senior undergraduate or first-year postgraduate courses on GLMs or categorical data analysis and as a methodology resource for VGAM users. In the second part of the book, the R package VGAM allows readers to grasp immediately applications of the methodology. R code is integrated in the text, and datasets are used throughout. Potential applications include ecology, finance, biostatistics, and social sciences. The methodological contribution of this book stands alone and does not require use of the VGAM package.
商品描述(中文翻譯)
這本書提供了一個比廣義線性模型(GLMs)更為擴展的統計框架,以便於進行迴歸建模。該框架包含約六大類主要的統計模型,並配備必要的基礎設施,使這些模型能夠更全面地運作,從而允許基於許多半傳統應用統計模型的分析作為一個連貫的整體進行。
自1972年GLMs問世以來,它們將重要的分佈統一在一個單一的框架下,具有深遠的意義。然而,GLMs在應對實際數據分析的需求上並不夠靈活。而數據驅動的GLMs,以廣義加性模型(GAMs)的形式,亦主要限於指數族。這裡的方法論及其隨附的軟體(廣泛的VGAM R套件)針對這些限制進行了探討,並首次在一本書中全面描述。這本書將分佈和經典模型視為廣義迴歸模型,結果是為GLMs和GAMs提供了更廣泛的應用基礎。
本書可用於高年級本科生或研究生第一年的GLMs或類別數據分析課程,並作為VGAM使用者的方法論資源。在本書的第二部分,R套件VGAM使讀者能立即掌握該方法論的應用。R代碼已整合於文本中,並在整個過程中使用數據集。潛在的應用包括生態學、金融、生物統計學和社會科學。本書的方法論貢獻獨立存在,並不需要使用VGAM套件。