Flexible Regression and Smoothing: Using Gamlss in R
暫譯: 靈活的迴歸與平滑:在 R 中使用 Gamlss

Stasinopoulos, Mikis D., Rigby, Robert A., Heller, Gillian Z.

  • 出版商: CRC
  • 出版日期: 2020-09-30
  • 售價: $2,480
  • 貴賓價: 9.5$2,356
  • 語言: 英文
  • 頁數: 549
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0367658062
  • ISBN-13: 9780367658069
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

This book is about learning from data using the Generalized Additive Models for Location, Scale and Shape (GAMLSS). GAMLSS extends the Generalized Linear Models (GLMs) and Generalized Additive Models (GAMs) to accommodate large complex datasets, which are increasingly prevalent.

In particular, the GAMLSS statistical framework enables flexible regression and smoothing models to be fitted to the data. The GAMLSS model assumes that the response variable has any parametric (continuous, discrete or mixed) distribution which might be heavy- or light-tailed, and positively or negatively skewed. In addition, all the parameters of the distribution (location, scale, shape) can be modelled as linear or smooth functions of explanatory variables.

Key Features:

  • Provides a broad overview of flexible regression and smoothing techniques to learn from data whilst also focusing on the practical application of methodology using GAMLSS software in R.
  • Includes a comprehensive collection of real data examples, which reflect the range of problems addressed by GAMLSS models and provide a practical illustration of the process of using flexible GAMLSS models for statistical learning.
  • R code integrated into the text for ease of understanding and replication.
  • Supplemented by a website with code, data and extra materials.

 

 

This book aims to help readers understand how to learn from data encountered in many fields. It will be useful for practitioners and researchers who wish to understand and use the GAMLSS models to learn from data and also for students who wish to learn GAMLSS through practical examples.

商品描述(中文翻譯)

這本書是關於使用廣義加性模型(Generalized Additive Models for Location, Scale and Shape,簡稱 GAMLSS)從數據中學習。GAMLSS 擴展了廣義線性模型(Generalized Linear Models,簡稱 GLMs)和廣義加性模型(Generalized Additive Models,簡稱 GAMs),以適應日益普遍的大型複雜數據集。

特別是,GAMLSS 統計框架使得可以將靈活的回歸和光滑模型擬合到數據上。GAMLSS 模型假設響應變量具有任何參數(連續、離散或混合)分佈,這些分佈可能是重尾或輕尾,並且可能是正偏或負偏。此外,分佈的所有參數(位置、尺度、形狀)都可以建模為解釋變量的線性或光滑函數。

**主要特點:**

- 提供靈活回歸和光滑技術的廣泛概述,以從數據中學習,同時專注於使用 R 中的 GAMLSS 軟體的實際應用方法。
- 包含一系列真實數據範例,反映 GAMLSS 模型所解決的問題範圍,並提供使用靈活 GAMLSS 模型進行統計學習過程的實際示範。
- 文中整合 R 代碼,便於理解和複製。
- 附有網站,提供代碼、數據和額外材料。

這本書旨在幫助讀者理解如何從許多領域中遇到的數據中學習。對於希望理解和使用 GAMLSS 模型來從數據中學習的實務工作者和研究者,以及希望通過實際範例學習 GAMLSS 的學生來說,這本書將非常有用。

作者簡介

Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, Fernanda De Bastiani

作者簡介(中文翻譯)

Mikis D. Stasinopoulos, Robert A. Rigby, Gillian Z. Heller, Vlasios Voudouris, Fernanda De Bastiani