An Introduction to Generalized Linear Models
暫譯: 廣義線性模型入門

Barnett, Adrian G.

  • 出版商: CRC
  • 出版日期: 2018-04-13
  • 售價: $3,540
  • 貴賓價: 9.5$3,363
  • 語言: 英文
  • 頁數: 376
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1138741515
  • ISBN-13: 9781138741515
  • 海外代購書籍(需單獨結帳)

商品描述

An Introduction to Generalized Linear Models, Fourth Edition provides a cohesive framework for statistical modelling, with an emphasis on numerical and graphical methods. This new edition of a bestseller has been updated with new sections on non-linear associations, strategies for model selection, and a Postface on good statistical practice.

 

Like its predecessor, this edition presents the theoretical background of generalized linear models (GLMs) before focusing on methods for analyzing particular kinds of data. It covers Normal, Poisson, and Binomial distributions; linear regression models; classical estimation and model fitting methods; and frequentist methods of statistical inference. After forming this foundation, the authors explore multiple linear regression, analysis of variance (ANOVA), logistic regression, log-linear models, survival analysis, multilevel modeling, Bayesian models, and Markov chain Monte Carlo (MCMC) methods.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  • Introduces GLMs in a way that enables readers to understand the unifying structure that underpins them
  • Discusses common concepts and principles of advanced GLMs, including nominal and ordinal regression, survival analysis, non-linear associations and longitudinal analysis
  • Connects Bayesian analysis and MCMC methods to fit GLMs
  • Contains numerous examples from business, medicine, engineering, and the social sciences
  • Provides the example code for R, Stata, and WinBUGS to encourage implementation of the methods
  • Offers the data sets and solutions to the exercises online
  • Describes the components of good statistical practice to improve scientific validity and reproducibility of results.

Using popular statistical software programs, this concise and accessible text illustrates practical approaches to estimation, model fitting, and model comparisons.

商品描述(中文翻譯)

《廣義線性模型導論(第四版)》提供了一個統計建模的整體框架,強調數值和圖形方法。這本暢銷書的新版本更新了有關非線性關聯、模型選擇策略以及良好統計實踐的後記的新章節。

與前一版類似,本版在專注於分析特定類型數據的方法之前,首先介紹廣義線性模型(GLMs)的理論背景。內容涵蓋常態、泊松和二項分佈;線性回歸模型;經典估計和模型擬合方法;以及頻率主義的統計推斷方法。在建立這一基礎後,作者探討了多元線性回歸、變異數分析(ANOVA)、邏輯回歸、對數線性模型、生存分析、多層次建模、貝葉斯模型和馬爾可夫鏈蒙特卡羅(MCMC)方法。

- 以使讀者能夠理解其統一結構的方式介紹GLMs
- 討論高級GLMs的常見概念和原則,包括名義和序數回歸、生存分析、非線性關聯和縱向分析
- 將貝葉斯分析和MCMC方法連接以擬合GLMs
- 包含來自商業、醫學、工程和社會科學的眾多例子
- 提供R、Stata和WinBUGS的示例代碼,以鼓勵方法的實施
- 在線提供數據集和練習的解答
- 描述良好統計實踐的組成部分,以提高科學有效性和結果的可重複性。

使用流行的統計軟體,本書簡明易懂地說明了估計、模型擬合和模型比較的實用方法。

作者簡介

Annette J. Dobson is Professor of Biostatistics at the Univesity of Queensland.

Adrian G. Barnett is a professor at the Queensland University of Technology.

作者簡介(中文翻譯)

安妮特·J·多布森是昆士蘭大學的生物統計學教授。

阿德里安·G·巴尼特是昆士蘭科技大學的教授。