Bayesian Statistical Methods
暫譯: 貝葉斯統計方法
Reich, Brian J., Ghosh, Sujit K.
- 出版商: CRC
- 出版日期: 2019-04-16
- 售價: $3,500
- 貴賓價: 9.5 折 $3,325
- 語言: 英文
- 頁數: 288
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0815378645
- ISBN-13: 9780815378648
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存=1)
商品描述
Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures.
In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics:
- Advice on selecting prior distributions
- Computational methods including Markov chain Monte Carlo (MCMC)
- Model-comparison and goodness-of-fit measures, including sensitivity to priors
- Frequentist properties of Bayesian methods
Case studies covering advanced topics illustrate the flexibility of the Bayesian approach:
- Semiparametric regression
- Handling of missing data using predictive distributions
- Priors for high-dimensional regression models
- Computational techniques for large datasets
- Spatial data analysis
The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book's website.
Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.
Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.
商品描述(中文翻譯)
《貝葉斯統計方法》為數據科學家提供了進行貝葉斯分析所需的基礎和計算工具。本書專注於在實務中常規應用的貝葉斯方法,包括多元線性回歸、混合效應模型和廣義線性模型(GLM)。作者提供了許多完整的 R 代碼示例,並與類似的頻率主義程序進行比較。
除了貝葉斯推斷方法的基本概念外,本書還涵蓋了許多一般主題:
- 選擇先驗分佈的建議
- 包括馬可夫鏈蒙特卡羅(MCMC)在內的計算方法
- 模型比較和擬合優度測量,包括對先驗的敏感性
- 貝葉斯方法的頻率主義特性
涵蓋進階主題的案例研究展示了貝葉斯方法的靈活性:
- 半參數回歸
- 使用預測分佈處理缺失數據
- 高維回歸模型的先驗
- 大數據集的計算技術
- 空間數據分析
這些進階主題以足夠的概念深度呈現,使讀者能夠進行此類分析並論證貝葉斯方法與經典方法的相對優缺點。本書網站上提供了 R 代碼庫、激勵數據集和完整的數據分析。
Brian J. Reich,北卡羅來納州立大學統計學副教授,目前是《農業、生物和環境統計學期刊》的主編,並獲得了 LeRoy & Elva Martin 教學獎。
Sujit K. Ghosh,北卡羅來納州立大學統計學教授,擁有超過 22 年的貝葉斯分析研究和教學經驗,獲得了 Cavell Brownie 指導獎,並曾擔任統計與應用數學科學研究所的副主任。
作者簡介
Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.
Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute
作者簡介(中文翻譯)
布萊恩·J·瑞克(Brian J. Reich),北卡羅來納州立大學統計學副教授,目前擔任《農業、生物及環境統計學期刊》(Journal of Agricultural, Biological, and Environmental Statistics)的主編,並獲得了勒羅伊與艾爾瓦·馬丁教學獎(LeRoy & Elva Martin Teaching Award)。
蘇吉特·K·戈什(Sujit K. Ghosh),北卡羅來納州立大學統計學教授,擁有超過22年的貝葉斯分析研究與教學經驗,曾獲得卡維爾·布朗尼導師獎(Cavell Brownie mentoring award),並擔任統計與應用數學科學研究所的副所長。