The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach
暫譯: 多變量失敗時間數據的統計分析:邊際建模方法
Prentice, Ross L., Zhao, Shanshan
- 出版商: CRC
- 出版日期: 2020-12-18
- 售價: $2,510
- 貴賓價: 9.5 折 $2,385
- 語言: 英文
- 頁數: 224
- 裝訂: Quality Paper - also called trade paper
- ISBN: 0367729555
- ISBN-13: 9780367729554
海外代購書籍(需單獨結帳)
商品描述
The Statistical Analysis of Multivariate Failure Time Data: A Marginal Modeling Approach provides an innovative look at methods for the analysis of correlated failure times. The focus is on the use of marginal single and marginal double failure hazard rate estimators for the extraction of regression information. For example, in a context of randomized trial or cohort studies, the results go beyond that obtained by analyzing each failure time outcome in a univariate fashion. The book is addressed to researchers, practitioners, and graduate students, and can be used as a reference or as a graduate course text.
Much of the literature on the analysis of censored correlated failure time data uses frailty or copula models to allow for residual dependencies among failure times, given covariates. In contrast, this book provides a detailed account of recently developed methods for the simultaneous estimation of marginal single and dual outcome hazard rate regression parameters, with emphasis on multiplicative (Cox) models. Illustrations are provided of the utility of these methods using Women's Health Initiative randomized controlled trial data of menopausal hormones and of a low-fat dietary pattern intervention. As byproducts, these methods provide flexible semiparametric estimators of pairwise bivariate survivor functions at specified covariate histories, as well as semiparametric estimators of cross ratio and concordance functions given covariates. The presentation also describes how these innovative methods may extend to handle issues of dependent censorship, missing and mismeasured covariates, and joint modeling of failure times and covariates, setting the stage for additional theoretical and applied developments. This book extends and continues the style of the classic Statistical Analysis of Failure Time Data by Kalbfleisch and Prentice.
Ross L. Prentice is Professor of Biostatistics at the Fred Hutchinson Cancer Research Center and University of Washington in Seattle, Washington. He is the recipient of COPSS Presidents and Fisher awards, the AACR Epidemiology/Prevention and Team Science awards, and is a member of the National Academy of Medicine.
Shanshan Zhao is a Principal Investigator at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina.
商品描述(中文翻譯)
《多變量失敗時間數據的統計分析:邊際建模方法》提供了一種創新的方法來分析相關的失敗時間。重點在於使用邊際單一和邊際雙重失敗危險率估計器來提取回歸信息。例如,在隨機試驗或隊列研究的背景下,結果超越了以單變量方式分析每個失敗時間結果所獲得的結果。本書針對研究人員、實務工作者和研究生,既可作為參考書籍,也可作為研究生課程的教材。
許多有關被審查的相關失敗時間數據分析的文獻使用脆弱性或聯合模型,以考慮在給定協變量的情況下失敗時間之間的殘餘依賴性。相對而言,本書詳細介紹了最近開發的邊際單一和雙重結果危險率回歸參數的同時估計方法,重點在於乘法(Cox)模型。書中提供了這些方法的實用性示例,使用了女性健康倡議隨機對照試驗的更年期激素和低脂飲食模式干預數據。作為副產品,這些方法提供了在特定協變量歷史下的成對雙變量生存函數的靈活半參數估計器,以及在給定協變量的情況下的交叉比和一致性函數的半參數估計器。該演示還描述了這些創新方法如何擴展以處理依賴性審查、缺失和錯誤測量的協變量以及失敗時間和協變量的聯合建模問題,為進一步的理論和應用發展奠定基礎。本書延續了Kalbfleisch和Prentice的經典著作《失敗時間數據的統計分析》的風格。
羅斯·L·普倫蒂斯(Ross L. Prentice)是華盛頓州西雅圖的弗雷德·哈欽森癌症研究中心和華盛頓大學的生物統計學教授。他是COPSS總統獎和費舍獎的獲得者,還獲得了AACR流行病學/預防和團隊科學獎,並且是國家醫學院的成員。
趙珊珊(Shanshan Zhao)是北卡羅來納州研究三角公園的國家環境健康科學研究所的首席研究員。
作者簡介
Ross L. Prentice is Professor of Biostatistics at the Fred Hutchinson Cancer Research Center and University of Washington in Seattle, Washington. He is the recipient of COPSS Presidents and Fisher awards, the AACR Epidemiology/Prevention and Team Science awards, and is a member of the National Academy of Medicine.
Shanshan Zhao is a Principal Investigator at the National Institute of Environmental Health Sciences in Research Triangle Park, North Carolina.
作者簡介(中文翻譯)
羅斯·L·普倫蒂斯是華盛頓州西雅圖的弗雷德·哈欽森癌症研究中心及華盛頓大學的生物統計學教授。他是COPSS總統獎和費雪獎的獲得者,還獲得了AACR流行病學/預防和團隊科學獎,並且是國家醫學院的成員。
趙珊珊是北卡羅來納州研究三角公園的國家環境健康科學研究所的首席研究員。