Longitudinal Data Analysis: Autoregressive Linear Mixed Effects Models (SpringerBriefs in Statistics)
暫譯: 縱向資料分析:自回歸線性混合效應模型(SpringerBriefs in Statistics)
Ikuko Funatogawa, Takashi Funatogawa
- 出版商: Springer
- 出版日期: 2019-02-22
- 售價: $2,660
- 貴賓價: 9.5 折 $2,527
- 語言: 英文
- 頁數: 145
- 裝訂: Paperback
- ISBN: 981100076X
- ISBN-13: 9789811000768
-
相關分類:
Data Science、機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
This book provides a new analytical approach for dynamic data repeatedly measured from multiple subjects over time. Random effects account for differences across subjects. Auto-regression in response itself is often used in time series analysis. In longitudinal data analysis, a static mixed effects model is changed into a dynamic one by the introduction of the auto-regression term. Response levels in this model gradually move toward an asymptote or equilibrium which depends on covariates and random effects. The book provides relationships of the autoregressive linear mixed effects models with linear mixed effects models, marginal models, transition models, nonlinear mixed effects models, growth curves, differential equations, and state space representation. State space representation with a modified Kalman filter provides log likelihoods for maximum likelihood estimation, and this representation is suitable for unequally spaced longitudinal data. The extension to multivariate longitudinal data analysis is also provided. Topics in medical fields, such as response-dependent dose modifications, response-dependent dropouts, and randomized controlled trials are discussed. The text is written in plain terms understandable for researchers in other disciplines such as econometrics, sociology, and ecology for the progress of interdisciplinary research.
商品描述(中文翻譯)
本書提供了一種新的分析方法,用於對多個受試者在時間上反覆測量的動態數據進行分析。隨機效應考慮了受試者之間的差異。自我回歸在響應本身中經常用於時間序列分析。在縱向數據分析中,靜態混合效應模型透過引入自我回歸項而轉變為動態模型。該模型中的響應水平逐漸朝向一個漸近線或平衡點移動,這取決於協變量和隨機效應。本書提供了自我回歸線性混合效應模型與線性混合效應模型、邊際模型、轉換模型、非線性混合效應模型、增長曲線、微分方程和狀態空間表示之間的關係。使用修改過的卡爾曼濾波器的狀態空間表示提供了最大似然估計的對數似然,並且這種表示適用於不等距的縱向數據。還提供了對多變量縱向數據分析的擴展。書中討論了醫學領域的主題,例如響應依賴的劑量調整、響應依賴的脫落和隨機對照試驗。文本以通俗易懂的術語撰寫,便於其他學科的研究人員(如計量經濟學、社會學和生態學)理解,以促進跨學科研究的進展。