Modeling Longitudinal Data
暫譯: 縱向數據建模
Robert E. Weiss
- 出版商: Springer
- 出版日期: 2005-06-28
- 售價: $5,380
- 貴賓價: 9.5 折 $5,111
- 語言: 英文
- 頁數: 432
- 裝訂: Hardcover
- ISBN: 0387402713
- ISBN-13: 9780387402710
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$2,280$2,166 -
$990$782 -
$880$748 -
$580$458 -
$780$741 -
$780$663 -
$650$507 -
$700$553 -
$520$411 -
$520$406 -
$690$538 -
$720$569 -
$550$429 -
$650$507 -
$680$578 -
$1,200$948 -
$490$382 -
$650$514 -
$580$458 -
$299$236 -
$198$156 -
$299Agile Web Development with Rails, 2/e
-
$149$118 -
$640$544 -
$1,159The Ten Faces of Innovation: IDEO's Strategies for Defeating the Devil's Advocate and Driving Creativity Throughout Your Organization
商品描述
Description
Longitudinal data are ubiquitous across Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education, yet many longitudinal data sets remain improperly analyzed. This book teaches the art and statistical science of modern longitudinal data analysis. The author emphasizes specifying, understanding, and interpreting longitudinal data models. He inspects the longitudinal data graphically, analyzes the time trend and covariates, models the covariance matrix, and then draws conclusions.
Covariance models covered include random effects, autoregressive, autoregressive moving average, antedependence, factor analytic, and completely unstructured models among others. Longer expositions explore: an introduction to and critique of simple non-longitudinal analyses of longitudinal data, missing data concepts, diagnostics, and simultaneous modeling of two longitudinal variables. Applications and issues for random effects models cover estimation, shrinkage, clustered data, models for binary and count data and residuals and residual plots. Shorter sections include a general discussion of how computational algorithms work, handling transformed data, and basic design issues.
This book requires a solid regression course as background and is particularly intended for the final year of a Biostatistics or Statistics Masters degree curriculum. The mathematical prerequisite is generally low, mainly assuming familiarity with regression analysis in matrix form. Doctoral students in Biostatistics or Statistics, applied researchers and quantitative doctoral students in disciplines such as Medicine, Public Health, Public Policy, Psychology, Political Science, Biology, Sociology and Education will find this book invaluable. The book has many figures and tables illustrating longitudinal data and numerous homework problems. The associated web site contains many longitudinal data sets, examples of computer code, and labs to re-enforce the material.
From the reviews:
"...This book is extremely well presented and it has been written in a style that makes its reading really pleasant and enjoyable...I highly recommend Modeling Longitudinal Data as a good reference book for anyone interested in looking into the art and statistical science of modern longitudinal data analysis." Journal of Applied Statistics, December 2005
"The book is clearly written and well presented. The author's accumulated experience in presenting the material comes over. On balance, this is one of the books which anyone about to teach a practical course in longitudinal data analysis should consider adopting as the course text." Short Book Reviews of the ISI, June 2006
"...Modeling Longitudinal Data is a welcome addition to the vast literature on longitudinal data analysis. The book requires little in terms of prerequisites but offers a great deal." Zhigang Zhang for the Journal of the American Statistical Association, December 2006
商品描述(中文翻譯)
**描述**
縱向數據在醫學、公共衛生、公共政策、心理學、政治科學、生物學、社會學和教育等領域中無處不在,然而許多縱向數據集仍然未被正確分析。本書教授現代縱向數據分析的藝術和統計科學。作者強調指定、理解和解釋縱向數據模型。他從圖形上檢查縱向數據,分析時間趨勢和協變量,建模協方差矩陣,然後得出結論。
涵蓋的協方差模型包括隨機效應、自回歸、自回歸移動平均、前依賴、因子分析和完全無結構模型等。較長的論述探討了:對簡單非縱向分析縱向數據的介紹和批評、缺失數據概念、診斷以及兩個縱向變量的同時建模。隨機效應模型的應用和問題涵蓋了估計、收縮、聚類數據、二元和計數數據的模型以及殘差和殘差圖。較短的部分包括計算算法如何運作的總體討論、處理轉換數據和基本設計問題。
本書要求具備堅實的迴歸課程作為背景,特別針對生物統計或統計碩士學位課程的最後一年。數學先決條件通常較低,主要假設對矩陣形式的迴歸分析有一定的熟悉度。生物統計或統計的博士生、應用研究人員以及醫學、公共衛生、公共政策、心理學、政治科學、生物學、社會學和教育等學科的定量博士生將會發現本書非常有價值。本書包含許多圖表和表格來說明縱向數據,並有大量的作業問題。相關網站包含許多縱向數據集、計算機代碼示例和實驗室,以加強學習材料。
來自評論的評價:
「...這本書的呈現非常出色,寫作風格使得閱讀變得愉快和享受...我強烈推薦《Modeling Longitudinal Data》作為任何對現代縱向數據分析的藝術和統計科學感興趣的人的良好參考書。」《應用統計學期刊》,2005年12月
「這本書寫得清晰且呈現良好。作者在呈現材料方面積累的經驗顯而易見。總的來說,這是任何即將教授縱向數據分析實務課程的人應考慮採用的課程教材之一。」《ISI短書評》,2006年6月
「...《Modeling Longitudinal Data》是對於縱向數據分析廣泛文獻的歡迎補充。這本書對於先決條件的要求很少,但提供了大量的內容。」《美國統計協會期刊》的Zhigang Zhang,2006年12月