Model-based Geostatistics for Global Public Health: Methods and Applications (Chapman & Hall/CRC Interdisciplinary Statistics)
暫譯: 基於模型的地質統計學在全球公共衛生中的應用:方法與應用(Chapman & Hall/CRC 跨學科統計)
Peter J. Diggle, Emanuele Giorgi
- 出版商: Chapman and Hall/CRC
- 出版日期: 2019-03-11
- 售價: $4,070
- 貴賓價: 9.5 折 $3,867
- 語言: 英文
- 頁數: 255
- 裝訂: Hardcover
- ISBN: 1138732354
- ISBN-13: 9781138732353
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,452Beautiful Data: The Stories Behind Elegant Data Solutions (Paperback)
-
$3,760$3,572 -
$4,530$4,304 -
$3,500$3,325 -
$1,260$1,235 -
$2,980$2,831 -
$1,760$1,672 -
$1,460Introduction to the Theory of Computation, 3/e (Hardcover)
-
$2,250$2,138 -
$7,250$6,888 -
$1,680$1,646 -
$2,550$2,423 -
$2,850$2,708 -
$2,040$1,938
相關主題
商品描述
Model-based Geostatistics for Global Public Health: Methods and Applications provides an introductory account of model-based geostatistics, its implementation in open-source software and its application in public health research. In the public health problems that are the focus of this book, the authors describe and explain the pattern of spatial variation in a health outcome or exposure measurement of interest. Model-based geostatistics uses explicit probability models and established principles of statistical inference to address questions of this kind.
Features:
- Presents state-of-the-art methods in model-based geostatistics.
- Discusses the application these methods some of the most challenging global public health problems including disease mapping, exposure mapping and environmental epidemiology.
- Describes exploratory methods for analysing geostatistical data, including: diagnostic checking of residuals standard linear and generalized linear models; variogram analysis; Gaussian process models and geostatistical design issues.
- Includes a range of more complex geostatistical problems where research is ongoing.
- All of the results in the book are reproducible using publicly available R code and data-sets, as well as a dedicated R package.
This book has been written to be accessible not only to statisticians but also to students and researchers in the public health sciences.
The Authors
Peter Diggle is Distinguished University Professor of Statistics in the Faculty of Health and Medicine, Lancaster University. He also holds honorary positions at the Johns Hopkins University School of Public Health, Columbia University International Research Institute for Climate and Society, and Yale University School of Public Health. His research involves the development of statistical methods for analyzing spatial and longitudinal data and their applications in the biomedical and health sciences.
Dr Emanuele Giorgi is a Lecturer in Biostatistics and member of the CHICAS research group at Lancaster University, where he formerly obtained a PhD in Statistics and Epidemiology in 2015. His research interests involve the development of novel geostatistical methods for disease mapping, with a special focus on malaria and other tropical diseases. In 2018, Dr Giorgi was awarded the Royal Statistical Society Research Prize "for outstanding published contribution at the interface of statistics and epidemiology." He is also the lead developer of PrevMap, an R package where all the methodology found in this book has been implemented.
商品描述(中文翻譯)
《基於模型的地理統計學在全球公共衛生中的應用:方法與應用》提供了基於模型的地理統計學的入門介紹,涵蓋其在開源軟體中的實現及其在公共衛生研究中的應用。在本書所聚焦的公共衛生問題中,作者描述並解釋了健康結果或感興趣的暴露測量的空間變異模式。基於模型的地理統計學使用明確的概率模型和已建立的統計推斷原則來解決這類問題。
特點:
- 提供基於模型的地理統計學的最先進方法。
- 討論這些方法在一些最具挑戰性的全球公共衛生問題中的應用,包括疾病地圖繪製、暴露地圖繪製和環境流行病學。
- 描述分析地理統計數據的探索性方法,包括:標準線性和廣義線性模型的殘差診斷檢查;變異數分析;高斯過程模型和地理統計設計問題。
- 包含一系列更複雜的地理統計問題,這些問題的研究仍在進行中。
- 本書中的所有結果均可使用公開可用的 R 代碼和數據集重現,並附有專用的 R 套件。
本書旨在使統計學家、公共衛生科學的學生和研究人員都能輕鬆理解。
作者介紹
彼得·迪格爾(Peter Diggle)是蘭卡斯特大學健康與醫學學院的傑出大學教授。他還在約翰霍普金斯大學公共衛生學院、哥倫比亞大學國際氣候與社會研究所及耶魯大學公共衛生學院擔任榮譽職位。他的研究涉及開發用於分析空間和縱向數據的統計方法及其在生物醫學和健康科學中的應用。
埃馬努埃爾·喬治(Dr Emanuele Giorgi)是蘭卡斯特大學生物統計學講師及 CHICAS 研究小組成員,2015 年在該校獲得統計學和流行病學博士學位。他的研究興趣包括開發新穎的地理統計方法以進行疾病地圖繪製,特別專注於瘧疾和其他熱帶疾病。2018 年,喬治博士因其在統計學和流行病學交界處的傑出發表貢獻而獲得皇家統計學會研究獎。他也是 PrevMap 的首席開發者,該 R 套件實現了本書中的所有方法論。