Elements of Causal Inference: Foundations and Learning Algorithms (Hardcover)
暫譯: 因果推斷的要素:基礎與學習演算法 (精裝版)
Jonas Peters, Dominik Janzing, Bernhard Schölkopf
- 出版商: MIT
- 出版日期: 2017-11-29
- 售價: $1,760
- 貴賓價: 9.5 折 $1,672
- 語言: 英文
- 頁數: 288
- 裝訂: Hardcover
- ISBN: 0262037319
- ISBN-13: 9780262037310
-
相關分類:
Machine Learning、Algorithms-data-structures
-
相關翻譯:
因果推理:基礎與學習算法 (簡中版)
買這商品的人也買了...
-
$1,452Beautiful Data: The Stories Behind Elegant Data Solutions (Paperback)
-
$4,530$4,304 -
$1,040$988 -
$3,500$3,325 -
$1,260$1,235 -
$2,980$2,831 -
$1,960$1,862 -
$1,460Introduction to the Theory of Computation, 3/e (Hardcover)
-
$1,480$1,450 -
$7,250$6,888 -
$1,715Introduction to Probability, 2/e (Hardcover)
-
$1,680$1,646 -
$2,550$2,423 -
$2,224Learning Algorithms: A Programmer's Guide to Writing Better Code
-
$551阿裡雲天池大賽賽題解析 — 深度學習篇
-
$509機器學習算法競賽實戰
-
$3,150An Introduction to Statistical Learning: With Applications in R, 2/e (Hardcover)
-
$2,850$2,708 -
$2,040$1,938 -
$400$280 -
$708$673 -
$2,146Introduction to Algorithms, 4/e (Hardcover)
-
$2,520Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow: Concepts, Tools, and Techniques to Build Intelligent Systems, 3/e (Paperback)
-
$2,520R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 2/e (Paperback)
-
$1,200$1,140
相關主題
商品描述
A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning.
The mathematization of causality is a relatively recent development, and has become increasingly important in data science and machine learning. This book offers a self-contained and concise introduction to causal models and how to learn them from data.
After explaining the need for causal models and discussing some of the principles underlying causal inference, the book teaches readers how to use causal models: how to compute intervention distributions, how to infer causal models from observational and interventional data, and how causal ideas could be exploited for classical machine learning problems. All of these topics are discussed first in terms of two variables and then in the more general multivariate case. The bivariate case turns out to be a particularly hard problem for causal learning because there are no conditional independences as used by classical methods for solving multivariate cases. The authors consider analyzing statistical asymmetries between cause and effect to be highly instructive, and they report on their decade of intensive research into this problem.
The book is accessible to readers with a background in machine learning or statistics, and can be used in graduate courses or as a reference for researchers. The text includes code snippets that can be copied and pasted, exercises, and an appendix with a summary of the most important technical concepts.
商品描述(中文翻譯)
對因果推斷的簡明且自足的介紹,這在資料科學和機器學習中越來越重要。
因果性數學化是一個相對較新的發展,並且在資料科學和機器學習中變得越來越重要。本書提供了一個自足且簡明的因果模型介紹,以及如何從資料中學習這些模型。
在解釋因果模型的必要性並討論一些因果推斷的基本原則之後,本書教導讀者如何使用因果模型:如何計算介入分佈,如何從觀察性和介入性資料推斷因果模型,以及如何利用因果概念解決傳統機器學習問題。所有這些主題首先以兩個變數的情況進行討論,然後再擴展到更一般的多變數情況。二元情況對於因果學習來說是一個特別困難的問題,因為沒有像傳統方法解決多變數情況所使用的條件獨立性。作者認為分析因果與結果之間的統計不對稱性是非常有啟發性的,並報告了他們在這個問題上十年的深入研究。
本書適合具有機器學習或統計背景的讀者,並可用於研究生課程或作為研究人員的參考。文本中包含可複製和粘貼的程式碼片段、練習題,以及附錄中總結了最重要的技術概念。