Statistical Analysis with Missing Data (Hardcover)
暫譯: 缺失資料的統計分析 (精裝版)
Little, Roderick J. a., Rubin, Donald B.
- 出版商: Wiley
- 出版日期: 2019-04-23
- 售價: $3,660
- 貴賓價: 9.5 折 $3,477
- 語言: 英文
- 頁數: 464
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 0470526793
- ISBN-13: 9780470526798
海外代購書籍(需單獨結帳)
買這商品的人也買了...
-
$1,480$1,450 -
$330$281 -
$1,758Causal Inference in Statistics: A Primer (Paperback)
-
$380$323 -
$580$458 -
$520$411 -
$1,715Introduction to Probability, 2/e (Hardcover)
-
$1,480$1,450 -
$680$537 -
$2,520R for Data Science: Import, Tidy, Transform, Visualize, and Model Data, 2/e (Paperback)
商品描述
AN UP-TO-DATE, COMPREHENSIVE TREATMENT OF A CLASSIC TEXT ON MISSING DATA IN STATISTICS
The topic of missing data has gained considerable attention in recent decades. This new edition by two acknowledged experts on the subject offers an up-to-date account of practical methodology for handling missing data problems. Blending theory and application, authors Roderick Little and Donald Rubin review historical approaches to the subject and describe simple methods for multivariate analysis with missing values. They then provide a coherent theory for analysis of problems based on likelihoods derived from statistical models for the data and the missing data mechanism, and then they apply the theory to a wide range of important missing data problems.
Statistical Analysis with Missing Data, Third Edition starts by introducing readers to the subject and approaches toward solving it. It looks at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data. It then goes on to examine missing data in experiments, before discussing complete-case and available-case analysis, including weighting methods. The new edition expands its coverage to include recent work on topics such as nonresponse in sample surveys, causal inference, diagnostic methods, and sensitivity analysis, among a host of other topics.
- An updated "classic" written by renowned authorities on the subject
- Features over 150 exercises (including many new ones)
- Covers recent work on important methods like multiple imputation, robust alternatives to weighting, and Bayesian methods
- Revises previous topics based on past student feedback and class experience
- Contains an updated and expanded bibliography
Statistical Analysis with Missing Data, Third Edition is an ideal textbook for upper undergraduate and/or beginning graduate level students of the subject. It is also an excellent source of information for applied statisticians and practitioners in government and industry.
商品描述(中文翻譯)
關於統計中缺失資料的經典文本的最新、全面的處理
缺失資料的主題在近幾十年來獲得了相當大的關注。這本由兩位公認專家所編寫的新版本,提供了處理缺失資料問題的最新實用方法。作者 Roderick Little 和 Donald Rubin 將理論與應用相結合,回顧了該主題的歷史方法,並描述了針對缺失值的多變量分析的簡單方法。接著,他們提供了一個基於從統計模型中推導出的似然性及缺失資料機制的問題分析的連貫理論,並將該理論應用於一系列重要的缺失資料問題。
Statistical Analysis with Missing Data, Third Edition 首先向讀者介紹該主題及其解決方法。它探討了造成缺失資料的模式和機制,以及缺失資料的分類法。然後,它檢視了實驗中的缺失資料,接著討論完整案例和可用案例分析,包括加權方法。新版本擴展了其涵蓋範圍,包含了最近在樣本調查中的非回應、因果推斷、診斷方法和敏感性分析等主題的研究。
- 由該領域知名權威撰寫的更新版「經典」
- 包含超過150個練習題(包括許多新題)
- 涵蓋了多重插補、加權的穩健替代方法和貝葉斯方法等重要方法的最新研究
- 根據過去學生的反饋和課堂經驗修訂了先前的主題
- 包含更新和擴展的參考書目
Statistical Analysis with Missing Data, Third Edition 是高年級本科生和/或初級研究生的理想教科書。它也是政府和產業中應用統計學家和實務工作者的優秀資訊來源。
作者簡介
Roderick J. A. Little, PhD., is Richard D. Remington Distinguished University Professor of Biostatistics, Professor of Statistics, and Research Professor, Institute for Social Research, at the University of Michigan.
Donald B. Rubin, PhD., is Professor, Yau Mathematical Sciences Center, Tsinghua University; Murray Shusterman Senior Research Fellow, Department of Statistical Science, Fox School of Business at Temple University; and Professor Emeritus, Harvard University.
作者簡介(中文翻譯)
羅德里克·J·A·利特(Roderick J. A. Little)博士是密西根大學生物統計學的理查德·D·雷明頓傑出大學教授、統計學教授及社會研究所的研究教授。
唐納德·B·魯賓(Donald B. Rubin)博士是清華大學姚數學科學中心的教授;天普大學福克斯商學院統計科學系的穆雷·舒斯特曼高級研究員;以及哈佛大學的名譽教授。