Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies
暫譯: 缺失資料的多重插補實務:基本理論與分析策略
He, Yulei, Zhang, Guangyu, Hsu, Chiu-Hsieh
- 出版商: CRC
- 出版日期: 2021-11-26
- 售價: $4,110
- 貴賓價: 9.5 折 $3,905
- 語言: 英文
- 頁數: 476
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 1498722067
- ISBN-13: 9781498722063
海外代購書籍(需單獨結帳)
商品描述
Multiple Imputation of Missing Data in Practice: Basic Theory and Analysis Strategies provides a comprehensive introduction to the multiple imputation approach to missing data problems that are often encountered in data analysis. Over the past 40 years or so, multiple imputation has gone through rapid development in both theories and applications. It is nowadays the most versatile, popular, and effective missing-data strategy that is used by researchers and practitioners across different fields. There is a strong need to better understand and learn about multiple imputation in the research and practical community.
Accessible to a broad audience, this book explains statistical concepts of missing data problems and the associated terminology. It focuses on how to address missing data problems using multiple imputation. It describes the basic theory behind multiple imputation and many commonly-used models and methods. These ideas are illustrated by examples from a wide variety of missing data problems. Real data from studies with different designs and features (e.g., cross-sectional data, longitudinal data, complex surveys, survival data, studies subject to measurement error, etc.) are used to demonstrate the methods. In order for readers not only to know how to use the methods, but understand why multiple imputation works and how to choose appropriate methods, simulation studies are used to assess the performance of the multiple imputation methods. Example datasets and sample programming code are either included in the book or available at a github site (https: //github.com/he-zhang-hsu/multiple_imputation_book).
Key Features
- Provides an overview of statistical concepts that are useful for better understanding missing data problems and multiple imputation analysis
- Provides a detailed discussion on multiple imputation models and methods targeted to different types of missing data problems (e.g., univariate and multivariate missing data problems, missing data in survival analysis, longitudinal data, complex surveys, etc.)
- Explores measurement error problems with multiple imputation
- Discusses analysis strategies for multiple imputation diagnostics
- Discusses data production issues when the goal of multiple imputation is to release datasets for public use, as done by organizations that process and manage large-scale surveys with nonresponse problems
- For some examples, illustrative datasets and sample programming code from popular statistical packages (e.g., SAS, R, WinBUGS) are included in the book. For others, they are available at a github site (https: //github.com/he-zhang-hsu/multiple_imputation_book)
商品描述(中文翻譯)
《缺失資料的多重插補實務:基本理論與分析策略》提供了對於在資料分析中常遇到的缺失資料問題的多重插補方法的全面介紹。在過去的四十年中,多重插補在理論和應用上都經歷了快速發展。如今,它已成為研究人員和實務工作者在不同領域中使用的最具多樣性、最受歡迎且最有效的缺失資料策略。研究和實務界對於更好地理解和學習多重插補有著強烈的需求。
本書面向廣泛的讀者群,解釋了缺失資料問題的統計概念及相關術語。它專注於如何使用多重插補來解決缺失資料問題。書中描述了多重插補背後的基本理論以及許多常用的模型和方法。這些概念通過各種缺失資料問題的例子進行說明。使用來自不同設計和特徵的研究的真實數據(例如,橫斷面資料、縱向資料、複雜調查、生存資料、受測量誤差影響的研究等)來演示這些方法。為了讓讀者不僅知道如何使用這些方法,還能理解為什麼多重插補有效以及如何選擇合適的方法,書中使用模擬研究來評估多重插補方法的性能。示例數據集和範例程式碼要麼包含在書中,要麼可在 GitHub 網站上獲得(https://github.com/he-zhang-hsu/multiple_imputation_book)。
主要特色
1. 提供有助於更好理解缺失資料問題和多重插補分析的統計概念概述。
2. 詳細討論針對不同類型缺失資料問題的多重插補模型和方法(例如,單變量和多變量缺失資料問題、生存分析中的缺失資料、縱向資料、複雜調查等)。
3. 探討與多重插補相關的測量誤差問題。
4. 討論多重插補診斷的分析策略。
5. 討論當多重插補的目標是釋放供公眾使用的數據集時的數據產出問題,這是由處理和管理大型調查的組織所做的,這些調查存在非回應問題。
6. 對於某些示例,書中包含來自流行統計套件(例如,SAS、R、WinBUGS)的示例數據集和範例程式碼。對於其他示例,則可在 GitHub 網站上獲得(https://github.com/he-zhang-hsu/multiple_imputation_book)。
作者簡介
Yulei He and Guangyu Zhang are mathematical statisticians at the National Center for Health Statistics, the U.S. Centers for Disease Control and Prevention. Chiu-Heish Hsu is a Professor of Biostatistics at the University of Arizona. All authors have researched, taught, and consulted in multiple imputation and missing data analysis in the past 20 years.
作者簡介(中文翻譯)
Yulei He 和 Guangyu Zhang 是美國疾病控制與預防中心國家健康統計中心的數學統計學家。Chiu-Heish Hsu 是亞利桑那大學的生物統計學教授。所有作者在過去20年中均在多重插補和缺失數據分析方面進行了研究、教學和諮詢。