Latent Structure and Causality: Inference from Data
暫譯: 潛在結構與因果關係:從數據中推斷

Qing Zhou

  • 出版商: World Scientific Pub
  • 出版日期: 2025-04-17
  • 售價: $3,670
  • 貴賓價: 9.5$3,487
  • 語言: 英文
  • 頁數: 288
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 9811290687
  • ISBN-13: 9789811290688
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

Inferring latent structure and causality is crucial for understanding underlying patterns and relationships hidden in the data. This book covers selected models for latent structures and causal networks and inference methods for these models.After an introduction to the EM algorithm on incomplete data, the book provides a detailed coverage of a few widely used latent structure models, including mixture models, hidden Markov models, and stochastic block models. EM and variation EM algorithms are developed for parameter estimation under these models, with comparison to their Bayesian inference counterparts. We make further extensions of these models to related problems, such as clustering, motif discovery, Kalman filtering, and exchangeable random graphs. Conditional independence structures are utilized to infer the latent structures in the above models, which can be represented graphically. This notion generalizes naturally to the second part on graphical models that use graph separation to encode conditional independence. We cover a variety of graphical models, including undirected graphs, directed acyclic graphs (DAGs), chain graphs, and acyclic directed mixed graphs (ADMGs), and various Markov properties for these models. Recent methods that learn the structure of a graphical model from data are reviewed and discussed. In particular, DAGs and Bayesian networks are an important class of mathematical models for causality. After an introduction to causal inference with DAGs and structural equation models, we provide a detailed review of recent research on causal discovery via structure learning of graphs. Finally, we briefly introduce the causal bandit problem with sequential intervention.

商品描述(中文翻譯)

推斷潛在結構和因果關係對於理解數據中隱藏的基本模式和關係至關重要。本書涵蓋了潛在結構和因果網絡的選定模型以及這些模型的推斷方法。在介紹了不完整數據上的 EM 演算法後,本書詳細介紹了幾個廣泛使用的潛在結構模型,包括混合模型、隱馬可夫模型和隨機區塊模型。針對這些模型,開發了 EM 和變異 EM 演算法以進行參數估計,並與其貝葉斯推斷對應方法進行比較。我們進一步擴展這些模型以解決相關問題,例如聚類、模式發現、卡爾曼濾波和可交換隨機圖。條件獨立結構被用來推斷上述模型中的潛在結構,這些結構可以以圖形方式表示。這一概念自然地推廣到第二部分的圖形模型,該部分使用圖分離來編碼條件獨立性。我們涵蓋了各種圖形模型,包括無向圖、有向無環圖(DAGs)、鏈圖和無環有向混合圖(ADMGs),以及這些模型的各種馬可夫性質。我們回顧並討論了最近從數據中學習圖形模型結構的方法。特別是,DAGs 和貝葉斯網絡是因果關係的重要數學模型類別。在介紹了使用 DAGs 和結構方程模型的因果推斷後,我們詳細回顧了通過圖的結構學習進行因果發現的最新研究。最後,我們簡要介紹了具有序列干預的因果強盜問題。

最後瀏覽商品 (1)