Big Data in Omics and Imaging: Integrated Analysis and Causal Inference (Chapman & Hall/CRC Mathematical and Computational Biology) (Volume 2)
暫譯: 大數據在組學與影像學中的應用:整合分析與因果推斷(Chapman & Hall/CRC 數學與計算生物學系列)(第二卷)

Momiao Xiong

  • 出版商: Chapman and Hall/CRC
  • 出版日期: 2018-06-19
  • 售價: $5,870
  • 貴賓價: 9.5$5,577
  • 語言: 英文
  • 頁數: 766
  • 裝訂: Hardcover
  • ISBN: 0815387105
  • ISBN-13: 9780815387107
  • 相關分類: 大數據 Big-data
  • 海外代購書籍(需單獨結帳)

商品描述

Big Data in Omics and Imaging: Integrated Analysis and Causal Inference addresses the recent development of integrated genomic, epigenomic and imaging data analysis and causal inference in big data era. Despite significant progress in dissecting the genetic architecture of complex diseases by genome-wide association studies (GWAS), genome-wide expression studies (GWES), and epigenome-wide association studies (EWAS), the overall contribution of the new identified genetic variants is small and a large fraction of genetic variants is still hidden. Understanding the etiology and causal chain of mechanism underlying complex diseases remains elusive. It is time to bring big data, machine learning and causal revolution to developing a new generation of genetic analysis for shifting the current paradigm of genetic analysis from shallow association analysis to deep causal inference and from genetic analysis alone to integrated omics and imaging data analysis for unraveling the mechanism of complex diseases.

FEATURES

  • Provides a natural extension and companion volume to Big Data in Omic and Imaging: Association Analysis, but can be read independently.
  • Introduce causal inference theory to genomic, epigenomic and imaging data analysis
  • Develop novel statistics for genome-wide causation studies and epigenome-wide causation studies.
  • Bridge the gap between the traditional association analysis and modern causation analysis
  • Use combinatorial optimization methods and various causal models as a general framework for inferring multilevel omic and image causal networks
  • Present statistical methods and computational algorithms for searching causal paths from genetic variant to disease
  • Develop causal machine learning methods integrating causal inference and machine learning
  • Develop statistics for testing significant difference in directed edge, path, and graphs, and for assessing causal relationships between two networks

The book is designed for graduate students and researchers in genomics, epigenomics, medical image, bioinformatics, and data science. Topics covered are: mathematical formulation of causal inference, information geometry for causal inference, topology group and Haar measure, additive noise models, distance correlation, multivariate causal inference and causal networks, dynamic causal networks, multivariate and functional structural equation models, mixed structural equation models, causal inference with confounders, integer programming, deep learning and differential equations for wearable computing, genetic analysis of function-valued traits, RNA-seq data analysis, causal networks for genetic methylation analysis, gene expression and methylation deconvolution, cell –specific causal networks, deep learning for image segmentation and image analysis, imaging and genomic data analysis, integrated multilevel causal genomic, epigenomic and imaging data analysis.

商品描述(中文翻譯)

《大數據在組學與影像學中的應用:整合分析與因果推斷》探討了在大數據時代,整合基因組、表觀基因組及影像數據分析與因果推斷的最新發展。儘管透過全基因組關聯研究(GWAS)、全基因組表達研究(GWES)和全表觀基因組關聯研究(EWAS)在解析複雜疾病的遺傳架構方面取得了顯著進展,但新識別的遺傳變異的整體貢獻仍然很小,且大量的遺傳變異仍然隱藏不明。理解複雜疾病的病因及其因果機制鏈仍然難以捉摸。現在是時候將大數據、機器學習和因果革命結合起來,開發新一代的遺傳分析,將當前的遺傳分析範式從淺層的關聯分析轉向深層的因果推斷,並從僅僅進行遺傳分析轉向整合組學與影像數據分析,以揭示複雜疾病的機制。

特點

- 提供《大數據在組學與影像學中的應用:關聯分析》的自然延伸和伴隨卷,但可獨立閱讀。
- 將因果推斷理論引入基因組、表觀基因組和影像數據分析。
- 開發全基因組因果研究和全表觀基因組因果研究的新統計方法。
- 橋接傳統關聯分析與現代因果分析之間的鴻溝。
- 使用組合優化方法和各種因果模型作為推斷多層次組學和影像因果網絡的一般框架。
- 提出從遺傳變異到疾病的因果路徑搜尋的統計方法和計算算法。
- 開發整合因果推斷和機器學習的因果機器學習方法。
- 開發用於檢測有向邊、路徑和圖形的顯著差異的統計方法,以及評估兩個網絡之間因果關係的統計方法。

本書旨在為基因組學、表觀基因組學、醫學影像、生物資訊學和數據科學的研究生和研究人員設計。涵蓋的主題包括:因果推斷的數學表述、因果推斷的信息幾何、拓撲群和Haar測度、加性噪聲模型、距離相關性、多變量因果推斷和因果網絡、動態因果網絡、多變量和功能結構方程模型、混合結構方程模型、考慮混淆變數的因果推斷、整數規劃、可穿戴計算的深度學習和微分方程、功能值性狀的遺傳分析、RNA-seq數據分析、遺傳甲基化分析的因果網絡、基因表達和甲基化解卷、細胞特異性因果網絡、影像分割和影像分析的深度學習、影像與基因組數據分析、整合多層次因果基因組、表觀基因組和影像數據分析。