相關主題
商品描述
Artificial Intelligence and Causal Inference address the recent development of relationships between artificial intelligence (AI) and causal inference. Despite significant progress in AI, a great challenge in AI development we are still facing is to understand mechanism underlying intelligence, including reasoning, planning and imagination. Understanding, transfer and generalization are major principles that give rise intelligence. One of a key component for understanding is causal inference. Causal inference includes intervention, domain shift learning, temporal structure and counterfactual thinking as major concepts to understand causation and reasoning. Unfortunately, these essential components of the causality are often overlooked by machine learning, which leads to some failure of the deep learning. AI and causal inference involve (1) using AI techniques as major tools for causal analysis and (2) applying the causal concepts and causal analysis methods to solving AI problems. The purpose of this book is to fill the gap between the AI and modern causal analysis for further facilitating the AI revolution. This book is ideal for graduate students and researchers in AI, data science, causal inference, statistics, genomics, bioinformatics and precision medicine.
Key Features:
- Cover three types of neural networks, formulate deep learning as an optimal control problem and use Pontryagin's Maximum Principle for network training.
- Deep learning for nonlinear mediation and instrumental variable causal analysis.
- Construction of causal networks is formulated as a continuous optimization problem.
- Transformer and attention are used to encode-decode graphics. RL is used to infer large causal networks.
- Use VAE, GAN, neural differential equations, recurrent neural network (RNN) and RL to estimate counterfactual outcomes.
- AI-based methods for estimation of individualized treatment effect in the presence of network interference.
商品描述(中文翻譯)
《人工智慧與因果推論》探討了人工智慧(AI)與因果推論之間關係的最新發展。儘管在AI方面取得了顯著進展,但我們在AI發展中仍面臨的一大挑戰是理解智慧背後的機制,包括推理、規劃和想像。理解、轉移和概括是促成智慧的主要原則。理解的關鍵組成部分之一是因果推論。因果推論包括干預、領域轉移學習、時間結構和反事實思維等主要概念,以理解因果關係和推理。不幸的是,這些因果性的重要組成部分常常被機器學習所忽視,這導致深度學習的一些失敗。AI與因果推論涉及(1)將AI技術作為因果分析的主要工具,以及(2)將因果概念和因果分析方法應用於解決AI問題。本書的目的是填補AI與現代因果分析之間的空白,以進一步促進AI革命。本書非常適合AI、數據科學、因果推論、統計學、基因組學、生物資訊學和精準醫療的研究生和研究人員。
主要特色:
- 涵蓋三種類型的神經網絡,將深度學習公式化為最佳控制問題,並使用Pontryagin的最大原則進行網絡訓練。
- 用於非線性中介和工具變量因果分析的深度學習。
- 因果網絡的構建被公式化為一個連續優化問題。
- 使用Transformer和注意力機制進行編碼-解碼圖形。使用強化學習推斷大型因果網絡。
- 使用變分自編碼器(VAE)、生成對抗網絡(GAN)、神經微分方程、遞迴神經網絡(RNN)和強化學習來估計反事實結果。
- 基於AI的方法用於在網絡干擾存在的情況下估計個體化治療效果。
作者簡介
Momiao Xiong, is a professor in the Department of Biostatistics and Data Science, University of Texas School of Public Health, and a regular member in the Genetics & Epigenetics (G&E) Graduate Program at The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Science. His interests are artificial intelligence, causal inference, bioinformatics and genomics.
作者簡介(中文翻譯)
Momiao Xiong 是德克薩斯大學公共衛生學院生物統計與數據科學系的教授,同時也是德克薩斯大學MD安德森癌症中心的遺傳學與表觀遺傳學(G&E)研究生項目的正式成員。他的研究興趣包括人工智慧、因果推斷、生物資訊學和基因組學。