Practical Time Series Analysis in Natural Sciences (自然科學中的實用時間序列分析)
Privalsky, Victor
- 出版商: Springer
- 出版日期: 2024-03-10
- 售價: $4,030
- 貴賓價: 9.5 折 $3,829
- 語言: 英文
- 頁數: 199
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031168933
- ISBN-13: 9783031168932
海外代購書籍(需單獨結帳)
相關主題
商品描述
This book presents an easy-to-use tool for time series analysis and allows the user to concentrate upon studying time series properties rather than upon how to calculate the necessary estimates. The two attached programs provide, in one run of the program, a time and frequency domain description of scalar or multivariate time series approximated with a sequence of autoregressive models of increasing orders. The optimal orders are chosen by five order selection criteria. The results for scalar time series include time domain stochastic difference equations, spectral density estimates, predictability properties, and a forecast of scalar time series based upon the Kolmogorov-Wiener theory. For the bivariate and trivariate time series, the results contain a time domain description with multivariate stochastic difference equations, statistical predictability criterion, and information for calculating feedback and Granger causality properties in the bivariate case. The frequency domain information includes spectral densities, ordinary, multiple, and partial coherence functions, ordinary and multiple coherent spectra, gain, phase, and time lag factors. The programs seem to be unique and using them does not require professional knowledge of theory of random processes. The book contains many examples including three from engineering.
商品描述(中文翻譯)
本書介紹了一個易於使用的時間序列分析工具,讓使用者能專注於研究時間序列的特性,而非計算所需的估計值。附帶的兩個程式在一次執行中提供了標量或多變量時間序列的時間域和頻率域描述,這些序列是通過一系列逐漸增加階數的自回歸模型進行近似的。最佳階數是根據五個階數選擇標準來選擇的。標量時間序列的結果包括時間域隨機差分方程、頻譜密度估計、可預測性特性,以及基於Kolmogorov-Wiener理論的標量時間序列預測。對於雙變量和三變量時間序列,結果包含了多變量隨機差分方程的時間域描述、統計可預測性標準,以及計算雙變量情況下的反饋和Granger因果性特性的資訊。頻率域資訊包括頻譜密度、普通、多重和部分相干函數、普通和多重相干頻譜、增益、相位和時間延遲因子。這些程式似乎是獨特的,使用它們不需要專業的隨機過程理論知識。本書包含了許多範例,其中三個來自工程領域。