EEG Signal Processing
暫譯: 腦電圖信號處理
Saeid Sanei, Jonathon A. Chambers
- 出版商: Wiley
- 出版日期: 2007-09-01
- 售價: $5,150
- 貴賓價: 9.5 折 $4,893
- 語言: 英文
- 頁數: 312
- 裝訂: Hardcover
- ISBN: 0470025816
- ISBN-13: 9780470025819
已過版
買這商品的人也買了...
-
$520$406 -
$880$695 -
$990Multidimensional Signal, Image, and Video Processing and Coding
-
$980$774 -
$350$298 -
$990$891 -
$600$480 -
$720$569 -
$620$589 -
$980$774 -
$720$569 -
$490$417 -
$1,558Introduction to Algorithms, 3/e (IE-Paperback)
-
$780$616 -
$680$537 -
$650$514 -
$650$514 -
$750$638 -
$520$411 -
$520$442 -
$600$570 -
$500$395 -
$520$442 -
$4,420$4,199 -
$950$808
商品描述
Description
It begins with an introductory chapter discussing the significance of EEG signal analysis and processing and provides some simple examples. A useful theoretical and mathematical background for analysis and processing of the EEG signals is developed within the next chapter and the mathematical tools to be applied in the rest of the book are covered.
Impressions from the EEG are next discussed, including normal and abnormal EEGs and the neurological symptoms diagnosed. The representations of the EEG’s are illustrated, showing EEGs in various domains together with two-dimensional maps of the brain. Theoretical approaches in EEG modeling are reviewed, such as restoration, enhancement, segmentation, and the removal of different internal and external artifacts from the EEG and ERP signals. The following chapters review seizure detection and prediction, including chaotic behavior of the EEG sources. Symptoms for a number of well-known illnesses such as dementia, schizophrenia, and Alzheimer’s diseases found from the EEG and ERPs are explained. The concluding chapters review the monitoring and diagnosis of stages of psychiatric disorders using noninvasive techniques such as from the EEG/ERP, and a number of high potential future topics for research in the area of EEG signal processing are discussed.
Table of Contents
Preface.List of Abbreviations.
List of Symbols.
1 Introduction to EEG.
1.1 History.
1.2 Neural Activities.
1.3 Action Potentials.
1.4 EEG Generation.
1.5 Brain Rhythms.
1.6 EEG Recording and Measurement.
1.6.1 Conventional Electrode Positioning.
1.6.2 Conditioning the Signals.
1.7 Abnormal EEG Patterns.
1.8 Ageing.
1.9 Mental Disorders.
1.9.1 Dementia.
1.9.2 Epileptic Seizure and Nonepileptic Attacks.
1.9.3 Psychiatric Disorders.
1.9.4 External Effects.
1.10 Summary and Conclusions.
References.
2 Fundamentals of EEG Signal Processing.
2.1 EEG Signal Modelling.
2.1.1 Linear Models.
2.1.2 Nonlinear Modelling.
2.1.3 Generating EEG Signals Based on Modelling the Neuronal Activities.
2.2 Nonlinearity of the Medium.
2.3 Nonstationarity.
2.4 Signal Segmentation.
2.5 Signal Transforms and Joint Time–Frequency Analysis.
2.5.1 Wavelet Transform.
2.5.2 Ambiguity Function and the Wigner–Ville Distribution.
2.6 Coherency, Multivariate Autoregressive (MVAR) Modelling, and Directed Transfer Function (DTF).
2.7 Chaos and Dynamical Analysis.
2.7.1 Entropy.
2.7.2 Kolmogorov Entropy.
2.7.3 Lyapunov Exponents.
2.7.4 Plotting the Attractor Dimensions from the Time Series.
2.7.5 Estimation of Lyapunov Exponents from the Time Series.
2.7.6 Approximate Entropy.
2.7.7 Using the Prediction Order.
2.8 Filtering and Denoising.
2.9 Principal Component Analysis.
2.9.1 Singular-Value Decomposition.
2.10 Independent Component Analysis.
2.10.1 Instantaneous BSS.
2.10.2 Convolutive BSS.
2.10.3 Sparse Component Analysis.
2.10.4 Nonlinear BSS.
2.10.5 Constrained BSS.
2.11 Application of Constrained BSS: Example.
2.12 Signal Parameter Estimation.
2.13 Classification Algorithms.
2.13.1 Support Vector Machines.
2.13.2 The k-Means Algorithm.
2.14 Matching Pursuits.
2.15 Summary and Conclusions.
References.
3 Event-Related Potentials.
3.1 Detection, Separation, Localization, and Classification of P300 Signals.
3.1.1 Using ICA.
3.1.2 Estimating Single Brain Potential Components by Modelling ERP Waveforms.
3.1.3 Source Tracking.
3.1.4 Localization of the ERP.
3.1.5 Time–Frequency Domain Analysis.
3.1.6 Adaptive Filtering Approach.
3.1.7 Prony’s Approach for Detection of P300 Signals.
3.1.8 Adaptive Time–Frequency Methods.
3.2 Brain Activity Assessment Using ERP.
3.3 Application of P300 to BCI.
3.4 Summary and Conclusions.
References.
4 Seizure Signal Analysis.
4.1 Seizure Detection.
4.1.1 Adult Seizure Detection.
4.1.2 Detection of Neonate Seizure.
4.2 Chaotic Behaviour of EEG Sources.
4.3 Predictability of Seizure from the EEGs.
4.4 Fusion of EEG–fMRI Data for Seizure Prediction.
4.5 Summary and Conclusions.
References.
5 EEG Source Localization.
5.1 Introduction.
5.1.1 General Approaches to Source Localization.
5.1.2 Dipole Assumption.
5.2 Overview of the Traditional Approaches.
5.2.1 ICA Method.
5.2.2 MUSIC Algorithm.
5.2.3 LORETA Algorithm.
5.2.4 FOCUSS Algorithm.
5.2.5 Standardized LORETA.
5.2.6 Other Weighted Minimum Norm Solutions.
5.2.7 Evaluation Indices.
5.2.8 Joint ICA–LORETA Approach.
5.2.9 Partially Constrained BSS Method.
5.3 Determination of the Number of Sources.
5.4 Summary and Conclusions.
References.
6 Sleep EEG.
6.1 Stages of Sleep.
6.1.1 NREM Sleep.
6.1.2 REM Sleep.
6.2 The Influence of Circadian Rhythms.
6.3 Sleep Deprivation.
6.4 Psychological Effects.
6.5 Detection and Monitoring of Brain Abnormalities During Sleep by EEG Analysis.
6.5.1 Detection of the Rhythmic Waveforms and Spindles Incorporating Blind Source Separation.
6.5.2 Application of Matching Pursuit.
6.5.3 Detection of Normal Rhythms and Spindles using Higher Order Statistics.
6.5.4 Application of Neural Networks.
6.5.5 Model-Based Analysis.
6.5.6 Hybrid Methods.
6.6 Concluding Remarks.
References.
7 Brain–Computer Interfacing.
7.1 State of the Art in BCI.
7.1.1 ERD and ERS.
7.1.2 Transient Beta Activity after the Movement.
7.1.3 Gamma Band Oscillations.
7.1.4 Long Delta Activity.
7.2 Major Problems in BCI.
7.2.1 Preprocessing of the EEGs.
7.3 Multidimensional EEG Decomposition.
7.3.1 Space–Time–Frequency Method.
7.3.2 Parallel Factor Analysis.
7.4 Detection and Separation of ERP Signals.
7.5 Source Localization and Tracking of the Moving Sources within the Brain.
7.6 Multivariant Autoregressive (MVAR) Modelling and Coherency Maps.
7.7 Estimation of Cortical Connectivity.
7.8 Summary and Conclusions.
References.
Index.
商品描述(中文翻譯)
描述
本書以介紹性章節開始,討論腦電圖(EEG)信號分析和處理的重要性,並提供一些簡單的範例。接下來的章節中,將發展出分析和處理EEG信號所需的理論和數學背景,並涵蓋本書其餘部分將應用的數學工具。
接著討論EEG的印象,包括正常和異常的EEG以及診斷出的神經症狀。EEG的表示方式將被說明,展示不同領域的EEG以及大腦的二維地圖。將回顧EEG建模中的理論方法,例如恢復、增強、分割,以及從EEG和事件相關電位(ERP)信號中去除不同的內部和外部伪影。隨後的章節將回顧癲癇發作的檢測和預測,包括EEG來源的混沌行為。將解釋從EEG和ERP中發現的多種知名疾病(如癡呆症、精神分裂症和阿茲海默症)的症狀。最後幾個章節將回顧使用非侵入性技術(如EEG/ERP)監測和診斷精神疾病的各個階段,並討論EEG信號處理領域未來的多個高潛力研究主題。
目錄
前言
縮寫列表
符號列表
1 EEG簡介
1.1 歷史
1.2 神經活動
1.3 動作電位
1.4 EEG生成
1.5 大腦節律
1.6 EEG記錄和測量
1.6.1 傳統電極定位
1.6.2 信號的調理
1.7 異常EEG模式
1.8 老化
1.9 精神障礙
1.9.1 癡呆症
1.9.2 癲癇發作和非癲癇發作
1.9.3 精神疾病
1.9.4 外部影響
1.10 總結與結論
參考文獻
2 EEG信號處理基礎
2.1 EEG信號建模
2.1.1 線性模型
2.1.2 非線性建模
2.1.3 基於神經活動建模生成EEG信號
2.2 媒介的非線性
2.3 非平穩性
2.4 信號分割
2.5 信號變換和聯合時頻分析
2.5.1 小波變換
2.5.2 模糊函數和Wigner-Ville分佈
2.6 相干性、多變量自回歸(MVAR)建模和定向傳遞函數(DTF)
2.7 混沌和動態分析
2.7.1 熵
2.7.2 Kolmogorov熵
2.7.3 Lyapunov指數
2.7.4 從時間序列繪製吸引子維度
2.7.5 從時間序列估計Lyapunov指數
2.7.6 近似熵
2.7.7 使用預測順序
2.8 過濾和去噪
2.9 主成分分析
2.9.1 奇異值分解
2.10 獨立成分分析
2.10.1 瞬時BSS
2.10.2 卷積BSS
2.10.3 稀疏成分分析
2.10.4 非線性BSS
2.10.5 受限BSS
2.11 受限BSS的應用:範例
2.12 信號參數估計
2.13 分類算法
2.13.1 支持向量機
2.13.2 k-均值算法
2.14 匹配追求
2.15 總結與結論
參考文獻
3 事件相關電位
3.1 P300信號的檢測、分離、定位和分類
3.1.1 使用ICA
3.1.2 通過建模ERP波形估計單一腦電位成分
3.1.3 來源追蹤
3.1.4 ERP的定位
3.1.5 時頻域分析
3.1.6 自適應過濾方法
3.1.7 Prony方法檢測P300信號
3.1.8 自適應時頻方法
3.2 使用ERP評估腦活動
3.3 P300在BCI中的應用
3.4 總結與結論
參考文獻
4 癲癇信號分析
4.1 癲癇檢測
4.1.1 成人癲癇檢測
4.1.2 新生兒癲癇檢測
4.2 EEG來源的混沌行為
4.3 從EEG預測癲癇的可預測性
4.4 EEG-fMRI數據融合以預測癲癇
4.5 總結與結論
參考文獻
5 EEG來源定位
5.1 介紹
5.1.1 來源定位的一般方法
5.1.2 雙極假設
5.2 傳統方法概述
5.2.1 ICA方法
5.2.2 MUSIC算法
5.2.3 LORETA算法
5.2.4 FOCUSS算法
5.2.5 標準化LORETA
5.2.6 其他加權最小範數解
5.2.7 評估指標
5.2.8 聯合ICA-LORETA方法
5.2.9 部分受限BSS方法
5.3 確定來源數量
5.4 總結與結論
參考文獻
6 睡眠EEG
6.1 睡眠階段
6.1.1 NREM睡眠
6.1.2 REM睡眠
6.2 生理節律的影響
6.3 睡眠剝奪
6.4 心理影響
6.5 通過EEG分析檢測和監測睡眠中的腦部異常
6.5.1 檢測節律波形和紡錘波,結合盲源分離
6.5.2 匹配追求的應用
6.5.3 使用高階統計檢測正常節律和紡錘波
6.5.4 神經網絡的應用
6.5.5 基於模型的分析
6.5.6 混合方法
6.6 總結性評論
參考文獻
7 腦-電腦介面
7.1 BCI的最新進展
7.1.1 ERD和ERS
7.1.2 運動後的瞬時β活動
7.1.3 伽瑪波段振盪
7.1.4 長期δ活動
7.2 BCI中的主要問題
7.2.1 EEG的預處理
7.3 多維EEG分解
7.3.1 空間-時間-頻率方法
7.3.2 平行因子分析
7.4 ERP信號的檢測和分離
7.5 來源定位和追蹤腦內移動來源
7.6 多變量自回歸(MVAR)建模和相干性圖
7.7 皮層連接性的估計
7.8 總結與結論
參考文獻
索引