Analysis and Classification of Eeg Signals for Brain-Computer Interfaces
暫譯: 腦機介面之腦電波信號分析與分類

Paszkiel, Szczepan

  • 出版商: Springer
  • 出版日期: 2019-09-11
  • 售價: $4,510
  • 貴賓價: 9.5$4,285
  • 語言: 英文
  • 頁數: 132
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 3030305805
  • ISBN-13: 9783030305802
  • 海外代購書籍(需單獨結帳)

商品描述

This book addresses the problem of EEG signal analysis and the need to classify it for practical use in many sample implementations of brain-computer interfaces. In addition, it offers a wealth of information, ranging from the description of data acquisition methods in the field of human brain work, to the use of Moore-Penrose pseudo inversion to reconstruct the EEG signal and the LORETA method to locate sources of EEG signal generation for the needs of BCI technology.

In turn, the book explores the use of neural networks for the classification of changes in the EEG signal based on facial expressions. Further topics touch on machine learning, deep learning, and neural networks. The book also includes dedicated implementation chapters on the use of brain-computer technology in the field of mobile robot control based on Python and the LabVIEW environment. In closing, it discusses the problem of the correlation between brain-computer technology and virtual reality technology.

商品描述(中文翻譯)

本書探討了腦電圖(EEG)信號分析的問題,以及將其分類以便在許多腦機介面(BCI)樣本實作中實際應用的需求。此外,本書提供了豐富的信息,涵蓋了從人腦工作領域的數據獲取方法描述,到使用Moore-Penrose偽逆重建EEG信號,以及使用LORETA方法定位EEG信號生成源以滿足BCI技術需求的內容。

本書進一步探討了基於面部表情的EEG信號變化分類的神經網絡應用。後續主題涉及機器學習、深度學習和神經網絡。本書還包括專門的實作章節,介紹基於Python和LabVIEW環境的腦機技術在移動機器人控制領域的應用。最後,本書討論了腦機技術與虛擬現實技術之間的相關性問題。