Models for Discrete Longitudinal Data
暫譯: 離散縱向數據模型

Geert Molenberghs, Geert Verbeke

  • 出版商: Springer
  • 出版日期: 2005-08-04
  • 售價: $8,860
  • 貴賓價: 9.5$8,417
  • 語言: 英文
  • 頁數: 687
  • 裝訂: Hardcover
  • ISBN: 0387251448
  • ISBN-13: 9780387251448
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Description 

This book provides a comprehensive treatment on modeling approaches for non-Gaussian repeated measures, possibly subject to incompleteness. The authors begin with models for the full marginal distribution of the outcome vector. This allows model fitting to be based on maximum likelihood principles, immediately implying inferential tools for all parameters in the models. At the same time, they formulate computationally less complex alternatives, including generalized estimating equations and pseudo-likelihood methods. They then briefly introduce conditional models and move on to the random-effects family, encompassing the beta-binomial model, the probit model and, in particular the generalized linear mixed model. Several frequently used procedures for model fitting are discussed and differences between marginal models and random-effects models are given attention.

The authors consider a variety of extensions, such as models for multivariate longitudinal measurements, random-effects models with serial correlation, and mixed models with non-Gaussian random effects. They sketch the general principles for how to deal with the commonly encountered issue of incomplete longitudinal data. The authors critique frequently used methods and propose flexible and broadly valid methods instead, and conclude with key concepts of sensitivity analysis.

Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The text is organized so that the reader can skip the software-oriented chapters and sections without breaking the logical flow.

From the reviews:

"Strengths of this book include its breadth of topics, excellent organization and clarity of writing...I highly recommend this book to my colleagues and students." -Justine Shults for the Journal of Biopharmaceutical Statistics, Issue 3, 2006

"Models for Discrete Longitudinal Data is an excellent choice for any statistician with an interest in analyzing discrete longitudinal data. It covers all of the theoretical and applied aspects in this area and is organized in such a way to serve as a handy reference guide for applied statisticians, especially those in biomedical fields. I learned a great deal from this book, and I recommend it highly to others." -John Williamson for the Journal of the American Statistical Association, September 2006

商品描述(中文翻譯)

**書籍描述**

本書全面探討非高斯重複測量的建模方法,可能會面臨不完整性問題。作者首先介紹了結果向量的完整邊際分佈模型。這使得模型擬合可以基於最大似然原則,立即推導出所有模型參數的推斷工具。同時,他們提出了計算上較不複雜的替代方案,包括廣義估計方程和偽似然方法。接著,他們簡要介紹了條件模型,並轉向隨機效應模型家族,包括貝塔-二項模型、probit模型,特別是廣義線性混合模型。書中討論了幾種常用的模型擬合程序,並關注邊際模型與隨機效應模型之間的差異。

作者考慮了多種擴展,例如多變量縱向測量的模型、具有序列相關性的隨機效應模型,以及具有非高斯隨機效應的混合模型。他們概述了如何處理常見的不完整縱向數據問題的一般原則。作者批評了常用的方法,並提出靈活且廣泛有效的方法,最後總結了敏感性分析的關鍵概念。

本書在不過度強調軟體的情況下,展示了如何在SAS軟體包中實現不同的方法。文本的組織方式使讀者可以跳過以軟體為導向的章節和部分,而不會破壞邏輯流程。

來自評論的聲音:
「本書的優點包括主題的廣度、出色的組織和清晰的寫作……我強烈推薦這本書給我的同事和學生。」 - *Justine Shults,發表於《生物製藥統計期刊》,2006年第3期*

「*離散縱向數據的模型* 是任何對分析離散縱向數據感興趣的統計學家的絕佳選擇。它涵蓋了該領域的所有理論和應用方面,並以便於應用統計學家,特別是生物醫學領域的專業人士作為方便的參考指南的方式組織。我從這本書中學到了很多,並強烈推薦給其他人。」 - *John Williamson,發表於《美國統計協會期刊》,2006年9月*