Sequential Change Detection and Hypothesis Testing: General Non-I.I.D. Stochastic Models and Asymptotically Optimal Rules
暫譯: 序列變化檢測與假設檢驗:一般非獨立同分佈隨機模型及漸近最優規則

Tartakovsky, Alexander

  • 出版商: CRC
  • 出版日期: 2019-12-02
  • 售價: $6,820
  • 貴賓價: 9.5$6,479
  • 語言: 英文
  • 頁數: 301
  • 裝訂: Hardcover - also called cloth, retail trade, or trade
  • ISBN: 1498757588
  • ISBN-13: 9781498757584
  • 海外代購書籍(需單獨結帳)

商品描述

How can major corporations and governments more quickly and accurately detect and address cyberattacks on their networks? How can local authorities improve early detection and prevention of epidemics? How can researchers improve the identification and classification of space objects in difficult (e.g., dim) settings?

 

These questions, among others in dozens of fields, can be addressed using statistical methods of sequential hypothesis testing and changepoint detection. This book considers sequential changepoint detection for very general non-i.i.d. stochastic models, that is, when the observed data is dependent and non-identically distributed. Previous work has primarily focused on changepoint detection with simple hypotheses and single-stream data. This book extends the asymptotic theory of change detection to the case of composite hypotheses as well as for multi-stream data when the number of affected streams is unknown. These extensions are more relevant for practical applications, including in modern, complex information systems and networks. These extensions are illustrated using Markov, hidden Markov, state-space, regression, and autoregression models, and several applications, including near-Earth space informatics and cybersecurity are discussed.

 

This book is aimed at graduate students and researchers in statistics and applied probability who are familiar with complete convergence, Markov random walks, renewal and nonlinear renewal theories, Markov renewal theory, and uniform ergodicity of Markov processes.

 

Key features:

 

 

 

 

 

 

 

 

  • Design and optimality properties of sequential hypothesis testing and change detection algorithms (in Bayesian, minimax, pointwise, and other settings)
  • Consideration of very general non-i.i.d. stochastic models that include Markov, hidden Markov, state-space linear and non-linear models, regression, and autoregression models
  • Multiple decision-making problems, including quickest change detection-identification
  • Real-world applications to object detection and tracking, near-Earth space informatics, computer network surveillance and security, and other topics

商品描述(中文翻譯)

如何讓大型企業和政府更快速且準確地偵測和應對其網絡上的網路攻擊?地方當局如何改善疫情的早期偵測和預防?研究人員如何在困難的環境(例如,昏暗的情況)中改善太空物體的識別和分類?

這些問題,以及其他許多領域的問題,可以通過統計方法的序列假設檢驗和變更點偵測來解決。本書考慮了非常一般的非獨立同分佈(non-i.i.d.)隨機模型的序列變更點偵測,即當觀察到的數據是相依且非同分佈的。先前的研究主要集中在具有簡單假設和單一數據流的變更點偵測。本書將變更檢測的漸近理論擴展到複合假設的情況,以及當受影響的數據流數量未知時的多數據流情況。這些擴展對於實際應用更具相關性,包括在現代複雜的信息系統和網絡中。這些擴展使用馬可夫(Markov)、隱馬可夫(hidden Markov)、狀態空間(state-space)、回歸(regression)和自回歸(autoregression)模型進行說明,並討論了幾個應用,包括近地太空信息學和網絡安全。

本書旨在針對熟悉完全收斂、馬可夫隨機遊走、更新和非線性更新理論、馬可夫更新理論以及馬可夫過程的均勻遍歷性(uniform ergodicity)的研究生和應用概率的研究人員。

主要特點:

- 序列假設檢驗和變更檢測算法的設計和最優性質(在貝葉斯、最小最大、逐點及其他設置中)
- 考慮非常一般的非獨立同分佈隨機模型,包括馬可夫、隱馬可夫、狀態空間線性和非線性模型、回歸和自回歸模型
- 多重決策問題,包括最快變更檢測-識別
- 實際應用於物體偵測和追蹤、近地太空信息學、計算機網絡監控和安全等主題

作者簡介

Alexander Tartakovsky is a Professor and Head of the Space Informatics Laboratory at the Moscow Institute of Physics and Technology and President of AGT StatConsult, Los Angeles, California, USA. From 1997 to 2013, he was a Professor at the Department of Mathematics and the Associate Director of the Center for Applied Mathematical Sciences at the University of Southern California, Los Angeles. From 2013 to 2015, he was a Professor at the Department of Statistics at the University of Connecticut at Storrs. He is a fellow of the Institute of Mathematical Statistics and a recipient of the 2007 Abraham Wald Award in Sequential Analysis. His research interests include theoretical and applied statistics, sequential analysis, changepoint detection phenomena, statistical image and signal processing, video surveillance and object detection and tracking, information integration/fusion, cybersecurity, and detection and tracking of malicious activity. He is the author of three books, several book chapters, and over 150 journal and conference publications.

作者簡介(中文翻譯)

亞歷山大·塔塔科夫斯基是莫斯科物理技術學院太空資訊實驗室的教授及主任,也是美國加州洛杉磯AGT StatConsult的總裁。從1997年到2013年,他擔任南加州大學數學系的教授及應用數學科學中心的副主任。從2013年到2015年,他是康乃狄克州史托斯的康乃爾大學統計系教授。他是數學統計學會的會士,並於2007年獲得亞伯拉罕·瓦爾德序列分析獎。他的研究興趣包括理論與應用統計、序列分析、變更點檢測現象、統計影像與信號處理、視頻監控及物體檢測與追蹤、資訊整合/融合、網路安全,以及惡意活動的檢測與追蹤。他是三本書的作者,數篇書章,以及超過150篇期刊和會議出版物的作者。