A Computational Approach to Statistical Learning (Chapman & Hall/CRC Texts in Statistical Science)
暫譯: 計算方法於統計學習(Chapman & Hall/CRC 統計科學系列)

Taylor Arnold, Michael Kane, Bryan W. Lewis

買這商品的人也買了...

相關主題

商品描述

A Computational Approach to Statistical Learning gives a novel introduction to predictive modeling by focusing on the algorithmic and numeric motivations behind popular statistical methods. The text contains annotated code to over 80 original reference functions. These functions provide minimal working implementations of common statistical learning algorithms. Every chapter concludes with a fully worked out application that illustrates predictive modeling tasks using a real-world dataset.

 

The text begins with a detailed analysis of linear models and ordinary least squares. Subsequent chapters explore extensions such as ridge regression, generalized linear models, and additive models. The second half focuses on the use of general-purpose algorithms for convex optimization and their application to tasks in statistical learning. Models covered include the elastic net, dense neural networks, convolutional neural networks (CNNs), and spectral clustering. A unifying theme throughout the text is the use of optimization theory in the description of predictive models, with a particular focus on the singular value decomposition (SVD). Through this theme, the computational approach motivates and clarifies the relationships between various predictive models.

 

Taylor Arnold is an assistant professor of statistics at the University of Richmond. His work at the intersection of computer vision, natural language processing, and digital humanities has been supported by multiple grants from the National Endowment for the Humanities (NEH) and the American Council of Learned Societies (ACLS). His first book, Humanities Data in R, was published in 2015.

 

Michael Kane is an assistant professor of biostatistics at Yale University. He is the recipient of grants from the National Institutes of Health (NIH), DARPA, and the Bill and Melinda Gates Foundation. His R package bigmemory won the Chamber's prize for statistical software in 2010.

 

Bryan Lewis is an applied mathematician and author of many popular R packages, including irlba, doRedis, and threejs.

商品描述(中文翻譯)

《計算方法的統計學習》提供了一個新穎的預測建模介紹,專注於流行統計方法背後的算法和數值動機。該文本包含超過80個原始參考函數的註釋代碼,這些函數提供了常見統計學習算法的最小可運行實現。每一章的結尾都有一個完整的應用示例,展示了使用真實世界數據集的預測建模任務。

該文本首先詳細分析了線性模型和普通最小二乘法。隨後的章節探討了擴展,如脊迴歸、廣義線性模型和加法模型。後半部分專注於通用算法在凸優化中的使用及其在統計學習任務中的應用。涵蓋的模型包括彈性網、密集神經網絡、卷積神經網絡(CNN)和光譜聚類。整個文本的統一主題是使用優化理論來描述預測模型,特別關注奇異值分解(SVD)。通過這一主題,計算方法激勵並澄清了各種預測模型之間的關係。

Taylor Arnold是里士滿大學的統計學助理教授。他在計算機視覺、自然語言處理和數位人文學科的交叉領域的工作得到了國家人文基金會(NEH)和美國學術協會(ACLS)多項資助。他的第一本書《R中的人文數據》於2015年出版。

Michael Kane是耶魯大學的生物統計學助理教授。他曾獲得國家衛生研究院(NIH)、國防高級研究計劃局(DARPA)和比爾及梅琳達·蓋茨基金會的資助。他的R套件bigmemory於2010年獲得了商會的統計軟體獎。

Bryan Lewis是一位應用數學家,並且是許多流行R套件的作者,包括irlbadoRedisthreejs