Computational Genome Analysis: An Introduction (Hardcover)
暫譯: 計算基因組分析:入門(精裝版)

Richard C. Deonier, Simon Tavaré, Michael S. Waterman

買這商品的人也買了...

商品描述

Description

Computational Genome Analysis: An Introduction presents the foundations of key problems in computational molecular biology and bioinformatics. It focuses on computational and statistical principles applied to genomes, and introduces the mathematics and statistics that are crucial for understanding these applications. The book is appropriate for a one-semester course for advanced undergraduate or beginning graduate students, and it can also introduce computational biology to computer scientists, mathematicians, or biologists who are extending their interests into this exciting field.

This book features:

Topics organized around biological problems, such as sequence alignment and assembly, DNA signals, analysis of gene expression, and human genetic variation

Presentation of fundamentals of probability, statistics, and algorithms

Implementation of computational methods with numerous examples based upon the R statistics package

Extensive descriptions and explanations to complement the analytical development

More than 100 illustrations and diagrams (some in color) to reinforce concepts and present key results from the primary literature

Exercises at the end of chapters

Michael S. Waterman is a University Professor, a USC Associates Chair in Natural Sciences, and Professor of Biological Sciences, Computer Science, and Mathematics at the University of Southern California. A member of the National Academy of Sciences and the American Academy of Arts and Sciences, Professor Waterman is Founding Editor and Co-Editor in Chief of the Journal of Computational Biology. His research has focused on computational analysis of molecular sequence data. His best-known work is the co-development of the local alignment Smith-Waterman algorithm, which has become the foundational tool for database search methods. His interests have also encompassed physical mapping, as exemplified by the Lander-Waterman formulas, and genome sequence assembly using an Eulerian path method.

Simon Tavaré holds the George and Louise Kawamoto Chair in Biological Sciences and is a Professor of Biological Sciences, Mathematics, and Preventive Medicine at the University of Southern California. Professor Tavaré's research lies at the interface between statistics and biology, specifically focusing on problems arising in molecular biology, human genetics, population genetics, molecular evolution, and bioinformatics. His statistical interests focus on stochastic computation. Among the applications are linkage disequilibrium mapping, stem cell evolution, and inference in the fossil record. Dr. Tavaré is also a professor in the Department of Oncology at the University of Cambridge, England, where his group concentrates on cancer genomics.

Richard C. Deonier is Professor Emeritus in the Molecular and Computational Biology Section of the Department of Biological Sciences at the University of Southern California. Originally trained as a physical biochemist, His major research has been in areas of molecular genetics, with particular interests in physical methods for gene mapping, bacterial transposable elements, and conjugative plasmids. During 30 years of active teaching, he has taught chemistry, biology, and computational biology at both the undergraduate and graduate levels.

 

Table of contents

Biology in a Nutshell.- Words.- Word Distributions and Occurrences.- Physical Mapping of DNA.- Genome Rearrangements.- Sequence Alignment.- Rapid Alignment Methods: FASTA and BLAST.- DNA Sequence Assembly.- Signals in DNA.- Similarity, Distance, and Clustering.- Measuring Expression of Genome Information.- Inferring the Past: Phylogenetic Trees.- Genetic Variation in Population.- Comparative Genomics.

商品描述(中文翻譯)

**書籍描述**

《計算基因組分析:入門》介紹了計算分子生物學和生物資訊學中的關鍵問題的基礎。它專注於應用於基因組的計算和統計原則,並介紹了理解這些應用所需的數學和統計學。本書適合高年級本科生或初級研究生的一學期課程,也可以向計算機科學家、數學家或生物學家介紹計算生物學,幫助他們擴展對這一激動人心領域的興趣。

本書特色:

- 以生物問題為主題的組織,例如序列比對和組裝、DNA信號、基因表達分析和人類遺傳變異
- 概率、統計和算法的基本原理介紹
- 基於R統計套件的多個範例實現計算方法
- 廣泛的描述和解釋以補充分析發展
- 超過100幅插圖和圖表(部分為彩色)以強化概念並呈現主要文獻中的關鍵結果
- 每章結尾的練習題

Michael S. Waterman是南加州大學的大學教授、自然科學的USC聯合主席,以及生物科學、計算機科學和數學的教授。他是美國國家科學院和美國藝術與科學學院的成員,也是《計算生物學期刊》的創始編輯和共同主編。他的研究專注於分子序列數據的計算分析。他最著名的工作是共同開發了局部比對的Smith-Waterman算法,該算法已成為數據庫搜索方法的基礎工具。他的研究興趣還包括物理圖譜,這在Lander-Waterman公式中得到了體現,以及使用歐拉路徑方法的基因組序列組裝。

Simon Tavaré擔任南加州大學生物科學的George和Louise Kawamoto講座教授,並且是生物科學、數學和預防醫學的教授。Tavaré教授的研究位於統計學和生物學的交界處,特別專注於分子生物學、人類遺傳學、群體遺傳學、分子進化和生物資訊學中出現的問題。他的統計興趣集中在隨機計算上,應用包括連鎖不平衡圖譜、幹細胞進化和化石記錄的推斷。Tavaré博士同時也是英國劍橋大學腫瘤學系的教授,他的研究小組專注於癌症基因組學。

Richard C. Deonier是南加州大學生物科學系分子與計算生物學部的名譽教授。最初受訓為物理生物化學家,他的主要研究集中在分子遺傳學領域,特別對基因圖譜的物理方法、細菌可轉移元素和接合質粒感興趣。在30年的教學活動中,他在本科和研究生層次教授化學、生物學和計算生物學。

**目錄**

生物學概述.- 詞彙.- 詞彙分佈與出現.- DNA的物理圖譜.- 基因組重排.- 序列比對.- 快速比對方法:FASTA和BLAST.- DNA序列組裝.- DNA中的信號.- 相似性、距離與聚類.- 測量基因組信息的表達.- 推斷過去:系統發生樹.- 群體中的遺傳變異.- 比較基因組學。