Bayesian Logical Data Analysis for the Physical Sciences: A Comparative Approach with Mathematica Support (Hardcover)
暫譯: 物理科學的貝葉斯邏輯數據分析:與 Mathematica 支援的比較方法 (精裝版)
Phil Gregory
- 出版商: Camberidge
- 出版日期: 2005-05-23
- 售價: $1,500
- 貴賓價: 9.8 折 $1,470
- 語言: 英文
- 頁數: 488
- 裝訂: Hardcover
- ISBN: 052184150X
- ISBN-13: 9780521841504
-
相關分類:
Data Science、機率統計學 Probability-and-statistics
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$690$587 -
$1,188UMTS Signaling: UMTS Interfaces, Protocols, Message Flows and Procedures Analyzed and Explained (Hardcover)
-
$880$695 -
$580$458 -
$650$507 -
$680$537 -
$580$458 -
$780$616 -
$1,080CMMI: Guidelines for Process Integration and Product Improvement, 2/e
-
$520$411 -
$880$695 -
$680$537 -
$450$356 -
$780$616 -
$2,140$2,033 -
$580$493 -
$650$553 -
$399CCNP BSCI Official Exam Certification Guide, 4/e
-
$2,380$2,261 -
$350$273 -
$750$638 -
$420$357 -
$360$284 -
$580$452 -
$500$395
商品描述
Description
Increasingly, researchers in many branches of science are coming into contact with Bayesian statistics or Bayesian probability theory. By encompassing both inductive and deductive logic, Bayesian analysis can improve model parameter estimates by many orders of magnitude. It provides a simple and unified approach to all data analysis problems, allowing the experimenter to assign probabilities to competing hypotheses of interest, on the basis of the current state of knowledge. This book provides a clear exposition of the underlying concepts with large numbers of worked examples and problem sets. The book also discusses numerical techniques for implementing the Bayesian calculations, including an introduction to Markov Chain Monte-Carlo integration and linear and nonlinear least-squares analysis seen from a Bayesian perspective. In addition, background material is provided in appendices and supporting Mathematica notebooks are available, providing an easy learning route for upper-undergraduates, graduate students, or any serious researcher in physical sciences or engineering.
Introduces statistical inference in the larger context of scientific methods, and includes many worked examples and problem sets. Presents Bayesian theory but also compares and contrasts with other existing ideas. Mathematica support notebook is available for readers from www.cambridge.org/052184150X
Table of Contents
1. Role of probability theory in science; 2. Probability theory as extended logic; 3. The how-to of Bayesian inference; 4. Assigning probabilities; 5. Frequentist statistical inference; 6. What is a statistic?; 7. Frequentist hypothesis testing; 8. Maximum entropy probabilities; 9. Bayesian inference (Gaussian errors); 10. Linear model fitting (Gaussian errors); 11. Nonlinear model fitting; 12. Markov Chain Monte Carlo; 13. Bayesian spectral analysis; 14. Bayesian inference (Poisson sampling); Appendix A. Singular value decomposition; Appendix B. Discrete Fourier Transform; Appendix C. Difference in two samples; D. Poisson ON/OFF details; Appendix E. Multivariate Gaussian from maximum entropy.
商品描述(中文翻譯)
**描述**
越來越多的科學研究者接觸到貝葉斯統計或貝葉斯概率理論。透過涵蓋歸納邏輯和演繹邏輯,貝葉斯分析能夠顯著改善模型參數的估計。它提供了一種簡單且統一的方法來解決所有數據分析問題,讓實驗者能夠根據當前的知識狀態,為感興趣的競爭假設分配概率。本書清晰地闡述了基礎概念,並提供大量的實例和習題。本書還討論了實現貝葉斯計算的數值技術,包括從貝葉斯的角度介紹馬可夫鏈蒙特卡羅(Markov Chain Monte-Carlo)積分以及線性和非線性最小二乘分析。此外,附錄中提供了背景材料,並提供支持的Mathematica筆記本,為高年級本科生、研究生或任何在物理科學或工程領域的認真研究者提供了簡便的學習途徑。
本書在科學方法的更大背景下介紹統計推斷,並包含許多實例和習題。呈現貝葉斯理論,同時與其他現有觀念進行比較和對比。Mathematica支持的筆記本可從 www.cambridge.org/052184150X 獲得。
**目錄**
1. 概率理論在科學中的角色;
2. 概率理論作為擴展邏輯;
3. 貝葉斯推斷的操作方法;
4. 分配概率;
5. 頻率主義統計推斷;
6. 什麼是統計量?;
7. 頻率主義假設檢驗;
8. 最大熵概率;
9. 貝葉斯推斷(高斯誤差);
10. 線性模型擬合(高斯誤差);
11. 非線性模型擬合;
12. 馬可夫鏈蒙特卡羅;
13. 貝葉斯頻譜分析;
14. 貝葉斯推斷(泊松取樣);
附錄A. 奇異值分解;
附錄B. 離散傅立葉變換;
附錄C. 兩個樣本的差異;
附錄D. 泊松開/關細節;
附錄E. 來自最大熵的多變量高斯。