Likelihood and Bayesian Inference: With Applications in Biology and Medicine
暫譯: 似然性與貝葉斯推斷:在生物學與醫學中的應用
Held, Leonhard, Sabanés Bové, Daniel
- 出版商: Springer
- 出版日期: 2020-04-01
- 售價: $3,750
- 貴賓價: 9.5 折 $3,563
- 語言: 英文
- 頁數: 402
- 裝訂: Hardcover - also called cloth, retail trade, or trade
- ISBN: 3662607913
- ISBN-13: 9783662607916
-
相關分類:
機率統計學 Probability-and-statistics
海外代購書籍(需單獨結帳)
商品描述
This richly illustrated textbook covers modern statistical methods with applications in medicine, epidemiology and biology. Firstly, it discusses the importance of statistical models in applied quantitative research and the central role of the likelihood function, describing likelihood-based inference from a frequentist viewpoint, and exploring the properties of the maximum likelihood estimate, the score function, the likelihood ratio and the Wald statistic. In the second part of the book, likelihood is combined with prior information to perform Bayesian inference. Topics include Bayesian updating, conjugate and reference priors, Bayesian point and interval estimates, Bayesian asymptotics and empirical Bayes methods. It includes a separate chapter on modern numerical techniques for Bayesian inference, and also addresses advanced topics, such as model choice and prediction from frequentist and Bayesian perspectives. This revised edition of the book "Applied Statistical Inference" has been expanded to include new material on Markov models for time series analysis. It also features a comprehensive appendix covering the prerequisites in probability theory, matrix algebra, mathematical calculus, and numerical analysis, and each chapter is complemented by exercises. The text is primarily intended for graduate statistics and biostatistics students with an interest in applications.
商品描述(中文翻譯)
這本插圖豐富的教科書涵蓋了現代統計方法在醫學、流行病學和生物學中的應用。首先,它討論了統計模型在應用定量研究中的重要性,以及似然函數的核心角色,從頻率主義的角度描述基於似然的推斷,並探討最大似然估計、得分函數、似然比和Wald統計量的性質。在書的第二部分,似然與先驗信息結合以進行貝葉斯推斷。主題包括貝葉斯更新、共軛和參考先驗、貝葉斯點估計和區間估計、貝葉斯漸近性和經驗貝葉斯方法。它還包括一章專門介紹貝葉斯推斷的現代數值技術,並且還涉及高級主題,如模型選擇和從頻率主義和貝葉斯的角度進行預測。這本《應用統計推斷》的修訂版擴展了有關時間序列分析的馬可夫模型的新材料。它還包含一個全面的附錄,涵蓋了概率論、矩陣代數、數學微積分和數值分析的先決條件,每一章都附有練習題。該文本主要針對對應用感興趣的研究生統計學和生物統計學學生。
作者簡介
Leonhard Held is a Full Professor of Biostatistics, Director of the Master's Program in Biostatistics and Chair of the Center for Reproducible Science at the University of Zurich, Switzerland. He has published several books and numerous articles on statistical methodology, applied statistics and biomedical research and teaches undergraduate and graduate-level courses in Biostatistics and Medical Statistics.
Daniel Sabanés Bové completed his PhD in Statistics at the University of Zurich under the supervision of Leonhard Held. He started his career as a biostatistician in oncology drug development at Hoffmann-La Roche in 2013, and has been a data scientist at Google since 2018.
作者簡介(中文翻譯)
Leonhard Held 是瑞士蘇黎世大學的生物統計學全職教授、生物統計碩士課程主任以及可重複科學中心的主席。他出版了幾本書籍和大量有關統計方法、應用統計和生物醫學研究的文章,並教授本科和研究生層級的生物統計學和醫學統計學課程。
Daniel Sabanés Bové 在瑞士蘇黎世大學完成了他的統計學博士學位,指導教授為 Leonhard Held。他於2013年在霍夫曼-拉羅氏(Hoffmann-La Roche)開始了他的生物統計學家職業生涯,專注於腫瘤藥物開發,並自2018年起成為谷歌(Google)的數據科學家。