PERSONALIZATION TECHNIQUES AND RECOMMENDER SYSTEMS

UCHYIGIT GULDEN ET AL

  • 出版商: World Scientific Pub
  • 出版日期: 2008-04-07
  • 售價: $4,940
  • 貴賓價: 9.5$4,693
  • 語言: 英文
  • 頁數: 334
  • 裝訂: Paperback
  • ISBN: 9812797017
  • ISBN-13: 9789812797018
  • 相關分類: 推薦系統
  • 海外代購書籍(需單獨結帳)

相關主題

商品描述

The phenomenal growth of the Internet has resulted in huge amounts of online information, a situation that is overwhelming to the end users. To overcome this problem, personalization technologies have been extensively employed.

The book is the first of its kind, representing research efforts in the diversity of personalization and recommendation techniques. These include user modeling, content, collaborative, hybrid and knowledge-based recommender systems. It presents theoretic research in the context of various applications from mobile information access, marketing and sales and web services, to library and personalized TV recommendation systems.

This volume will serve as a basis to researchers who wish to learn more in the field of recommender systems, and also to those intending to deploy advanced personalization techniques in their systems.

Contents: User Modeling and Profiling: Personalization-Privacy Tradeoffs in Adaptive Information Access (B Smyth); A Deep Evaluation of Two Cognitive User Models for Personalized Search (F Gasparetti & A Micarelli); Unobtrusive User Modeling for Adaptive Hypermedia (H J Holz et al.); User Modelling Sharing for Adaptive e-Learning and Intelligent Help (K Kabassi et al.); Collaborative Filtering: Experimental Analysis of Multiattribute Utility Collaborative Filtering on a Synthetic Data Set (N Manouselis & C Costopoulou); Efficient Collaborative Filtering in Content-Addressable Spaces (S Berkovsky et al.); Identifying and Analyzing User Model Information from Collaborative Filtering Datasets (J Griffith et al.); Content-Based Systems, Hybrid Systems and Machine Learning Methods: Personalization Strategies and Semantic Reasoning: Working in Tandem in Advanced Recommender Systems (Y Blanco-Fernández et al.); Content Classification and Recommendation Techniques for Viewing Electronic Programming Guide on a Portable Device (J Zhu et al.); User Acceptance of Knowledge-Based Recommenders (A Felfernig et al.); Using Restricted Random Walks for Library Recommendations and Knowledge Space Exploration (M Franke & A Geyer-Schulz); An Experimental Study of Feature Selection Methods for Text Classification (G Uchyigit & K Clark).