Least-Mean-Square Adaptive Filters (Hardcover)
暫譯: 最小均方自適應濾波器 (精裝版)
S. Haykin , B. Widrow
- 出版商: Wiley
- 出版日期: 2003-09-08
- 售價: $1,127
- 語言: 英文
- 頁數: 512
- 裝訂: Hardcover
- ISBN: 0471215708
- ISBN-13: 9780471215707
無法訂購
買這商品的人也買了...
-
$1,029Fundamentals of Data Structures in C++
-
$1,060$1,007 -
$1,225Algorithms for Statistical Signal Processing (Hardcover)
-
$560$504 -
$1,311Antenna and Em Modeling With Matlab (Hardocver)
-
$560$476 -
$590$466 -
$8,690$8,256 -
$750$638 -
$490$382 -
$560$476 -
$550$468 -
$1,078Machine Learning (IE-Paperback)
-
$750$593 -
$620$527 -
$780$616 -
$580$458 -
$690$538 -
$650$507 -
$680$578 -
$2,330$2,214 -
$1,150$1,127 -
$800$632 -
$450$351 -
$1,680$1,646
商品描述
A landmark text in LMS filter technology–– from the field’s leading authorities
In the field of electrical engineering and signal processing, few algorithms have proven as adaptable as the least-mean-square (LMS) algorithm. Devised by Bernard Widrow and M. Hoff, this simple yet effective algorithm now represents the cornerstone for the design of adaptive transversal (tapped-delay-line) filters.
Today, working efficiently with LMS adaptive filters not only involves understanding their fundamentals, it also means staying current with their many applications in practical systems. However, no single resource has presented an up-to-the-minute examination of these and all other essential aspects of LMS filters–until now.
Edited by Simon Haykin and Bernard Widrow, the original inventor of the technology, Least-Mean-Square Adaptive Filters offers the most definitive look at the LMS filter available anywhere. Here, readers will get a commanding perspective on the desirable properties that have made LMS filters the turnkey technology for adaptive signal processing. Just as importantly, Least-Mean-Square Adaptive Filters brings together the contributions of renowned experts whose insights reflect the state-of-the-art of the field today. In each chapter, the book presents the latest thinking on a wide range of vital, fast-emerging topics, including:
- Traveling-wave analysis of long LMS filters
- Energy conservation and the learning ability of LMS adaptive filters
- Robustness of LMS filters
- Dimension analysis for LMS filters
- Affine projection filters
- Proportionate adaptation
- Dynamic adaptation
- Error whitening Wiener filters
As the editors point out, there is no direct mathematical theory for the stability and steady-state performance of the LMS filter. But it is possible to chart its behavior in a stationary and nonstationary environment. Least-Mean-Square Adaptive Filters puts these defining characteristics into sharp focus, and–more than any other source–brings you up to speed on everything that the LMS filter has to offer.
Table of Contents:
Contributors.
Introduction (Simon Haykin).
1. On the Efficiency of Adaptive Algorithms (Berrnard Widrow and Max Kamenetsky).
2. Travelling-Wave Model of Long LMS Filters (Hans Butterweck).
3. Energy Conservation and the Learning Ability of LMS Adaptive Filters (Ali Sayed & Vitor H. Nascimento).
4. On the Robustness of LMS Filters (Babak Hassibi).
5. Dimension Analysis for Least-Mean-Square Algorithms (Iven M.Y. Mareels, et al.).
6. Control of LMS-Type Adaptive Filters (Eberhard Haensler and Gerhard Uwe Schmidt).
7. Affine Projection Algorithms (Steve Gay).
8. Proportionate Adaptation: New Paradigms in Adaptive Filters (Zhe Chen, et al.).
9. Steady-State Dynamic Weight Behavior in (N)LMS Adaptive Filters (A.A. (Louis) Beex and James R. Zeidler).
10. Error Whitening Wiener Filters: Theory and Algorithms (Jose Principe, et al.).
Index.
商品描述(中文翻譯)
一部在LMS濾波器技術上具有里程碑意義的著作——來自該領域的領先權威
在電機工程和信號處理領域,少有算法能像最小均方(LMS)算法那樣適應性強。這一簡單而有效的算法由Bernard Widrow和M. Hoff提出,現在已成為自適應橫向(抽頭延遲線)濾波器設計的基石。
如今,與LMS自適應濾波器高效工作不僅需要理解其基本原理,還需要跟上其在實際系統中眾多應用的最新進展。然而,直到現在,沒有任何單一資源能對這些及其他LMS濾波器的基本方面進行最新的檢視。
由Simon Haykin和技術的原始發明者Bernard Widrow編輯的《最小均方自適應濾波器》提供了有關LMS濾波器的最權威的觀察。在這裡,讀者將獲得對LMS濾波器所具備的理想特性的深刻理解,這些特性使其成為自適應信號處理的即插即用技術。同樣重要的是,《最小均方自適應濾波器》匯集了知名專家的貢獻,他們的見解反映了當前該領域的最先進技術。在每一章中,本書呈現了對一系列重要且快速出現的主題的最新思考,包括:
- 長LMS濾波器的行波分析
- LMS自適應濾波器的能量守恆與學習能力
- LMS濾波器的穩健性
- LMS濾波器的維度分析
- 仿射投影濾波器
- 比例適應
- 動態適應
- 錯誤白化Wiener濾波器
正如編輯所指出的,LMS濾波器的穩定性和穩態性能並沒有直接的數學理論。但可以在穩定和非穩定環境中繪製其行為。《最小均方自適應濾波器》將這些定義特徵清晰地呈現出來,並且——比任何其他來源都更能讓你了解LMS濾波器所能提供的一切。
目錄:
貢獻者。
導言(Simon Haykin)。
1. 自適應算法的效率(Bernard Widrow和Max Kamenetsky)。
2. 長LMS濾波器的行波模型(Hans Butterweck)。
3. LMS自適應濾波器的能量守恆與學習能力(Ali Sayed & Vitor H. Nascimento)。
4. LMS濾波器的穩健性(Babak Hassibi)。
5. 最小均方算法的維度分析(Iven M.Y. Mareels,等)。
6. LMS型自適應濾波器的控制(Eberhard Haensler和Gerhard Uwe Schmidt)。
7. 仿射投影算法(Steve Gay)。
8. 比例適應:自適應濾波器中的新範式(Zhe Chen,等)。
9. (N)LMS自適應濾波器中的穩態動態權重行為(A.A. (Louis) Beex和James R. Zeidler)。
10. 錯誤白化Wiener濾波器:理論與算法(Jose Principe,等)。
索引。