PERSONALIZATION TECHNIQUES AND RECOMMENDER SYSTEMS
暫譯: 個人化技術與推薦系統
UCHYIGIT GULDEN ET AL
- 出版商: World Scientific Pub
- 出版日期: 2008-04-07
- 售價: $5,000
- 貴賓價: 9.5 折 $4,750
- 語言: 英文
- 頁數: 334
- 裝訂: Paperback
- ISBN: 9812797017
- ISBN-13: 9789812797018
-
相關分類:
推薦系統
海外代購書籍(需單獨結帳)
相關主題
商品描述
The book is the first of its kind, representing research efforts in the diversity of personalization and recommendation techniques. These include user modeling, content, collaborative, hybrid and knowledge-based recommender systems. It presents theoretic research in the context of various applications from mobile information access, marketing and sales and web services, to library and personalized TV recommendation systems.
This volume will serve as a basis to researchers who wish to learn more in the field of recommender systems, and also to those intending to deploy advanced personalization techniques in their systems.
Contents: User Modeling and Profiling: Personalization-Privacy Tradeoffs in Adaptive Information Access (B Smyth); A Deep Evaluation of Two Cognitive User Models for Personalized Search (F Gasparetti & A Micarelli); Unobtrusive User Modeling for Adaptive Hypermedia (H J Holz et al.); User Modelling Sharing for Adaptive e-Learning and Intelligent Help (K Kabassi et al.); Collaborative Filtering: Experimental Analysis of Multiattribute Utility Collaborative Filtering on a Synthetic Data Set (N Manouselis & C Costopoulou); Efficient Collaborative Filtering in Content-Addressable Spaces (S Berkovsky et al.); Identifying and Analyzing User Model Information from Collaborative Filtering Datasets (J Griffith et al.); Content-Based Systems, Hybrid Systems and Machine Learning Methods: Personalization Strategies and Semantic Reasoning: Working in Tandem in Advanced Recommender Systems (Y Blanco-Fernández et al.); Content Classification and Recommendation Techniques for Viewing Electronic Programming Guide on a Portable Device (J Zhu et al.); User Acceptance of Knowledge-Based Recommenders (A Felfernig et al.); Using Restricted Random Walks for Library Recommendations and Knowledge Space Exploration (M Franke & A Geyer-Schulz); An Experimental Study of Feature Selection Methods for Text Classification (G Uchyigit & K Clark).
商品描述(中文翻譯)
互聯網的驚人增長導致了大量的在線信息,這對最終用戶來說是一種壓倒性的情況。為了解決這個問題,個性化技術得到了廣泛的應用。
這本書是同類中的第一本,代表了在個性化和推薦技術多樣性方面的研究努力。這些技術包括用戶建模、內容推薦、協作過濾、混合推薦系統和基於知識的推薦系統。它在各種應用的背景下呈現理論研究,這些應用包括移動信息訪問、市場營銷和銷售、網絡服務,以及圖書館和個性化電視推薦系統。
這本書將為希望在推薦系統領域深入學習的研究人員提供基礎,也適合那些打算在其系統中部署先進個性化技術的人士。
**內容:**
用戶建模與分析:自適應信息訪問中的個性化與隱私權衡(B Smyth);針對個性化搜索的兩種認知用戶模型的深度評估(F Gasparetti & A Micarelli);自適應超媒體的無干擾用戶建模(H J Holz 等);自適應電子學習和智能幫助的用戶建模共享(K Kabassi 等);協作過濾:基於合成數據集的多屬性效用協作過濾的實驗分析(N Manouselis & C Costopoulou);在內容可尋址空間中的高效協作過濾(S Berkovsky 等);從協作過濾數據集中識別和分析用戶模型信息(J Griffith 等);基於內容的系統、混合系統和機器學習方法:個性化策略與語義推理:在先進推薦系統中協同工作(Y Blanco-Fernández 等);在可攜式設備上查看電子節目指南的內容分類和推薦技術(J Zhu 等);對基於知識的推薦系統的用戶接受度(A Felfernig 等);使用限制隨機漫步進行圖書館推薦和知識空間探索(M Franke & A Geyer-Schulz);文本分類的特徵選擇方法的實驗研究(G Uchyigit & K Clark)。