Evolutionary Algorithms in Engineering and Computer Science
暫譯: 工程與計算機科學中的進化演算法
M. M. Makela
- 出版商: Wiley
- 出版日期: 1999-07-09
- 售價: $1,045
- 語言: 英文
- 頁數: 500
- 裝訂: Hardcover
- ISBN: 0471999024
- ISBN-13: 9780471999027
-
相關分類:
Algorithms-data-structures、Computer-Science
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$1,200$1,176 -
$680$537 -
$780$616 -
$825Cisco CCNA Exam #640-607 Certification Guide, 3/e
-
$1,900$1,805 -
$690$587 -
$420$328 -
$550$435 -
$650$514 -
$690$545 -
$590$502 -
$620$490 -
$750$638 -
$560$476 -
$420$328 -
$850$723 -
$460$359 -
$620$484 -
$280$218 -
$480$379 -
$750$593 -
$720$569 -
$780$616 -
$390$332 -
$580$458
商品描述
Summary
Evolutionary Algorithms in Engineering and Computer Science Edited by K. Miettinen, University of Jyv䳫yl䬠Finland M. M. M䫥l䬠University of Jyv䳫yl䬠Finland P. Neittaanm䫩, University of Jyv䳫yl䬠Finland J. P鲩aux, Dassault Aviation, France What is Evolutionary Computing? Based on the genetic message encoded in DNA, and digitalized algorithms inspired by the Darwinian framework of evolution by natural selection, Evolutionary Computing is one of the most important information technologies of our times. Evolutionary algorithms encompass all adaptive and computational models of natural evolutionary systems - genetic algorithms, evolution strategies, evolutionary programming and genetic programming. In addition, they work well in the search for global solutions to optimization problems, allowing the production of optimization software that is robust and easy to implement. Furthermore, these algorithms can easily be hybridized with traditional optimization techniques. This book presents state-of-the-art lectures delivered by international academic and industrial experts in the field of evolutionary computing. It bridges artificial intelligence and scientific computing with a particular emphasis on real-life problems encountered in application-oriented sectors, such as aerospace, electronics, telecommunications, energy and economics. This rapidly growing field, with its deep understanding and assesssment of complex problems in current practice, provides an effective, modern engineering tool. This book will therefore be of significant interest and value to all postgraduates, research scientists and practitioners facing complex optimization problems.
Table of Contents
METHODOLOGICAL ASPECTS.
Using Genetic Algorithms for Optimization: Technology Transfer in Action (J. Haataja).
An Introduction to Evolutionary Computation and Some Applications (D. Fogel).
Evolutionary Computation: Recent Developments and Open Issues (K. De Jong).
Some Recent Important Foundational Results in Evolutionary Computation (D. Fogel). Evolutionary Algorithms for Engineering Applications (Z. Michalewicz, et al.).
Embedded Path Tracing and Neighbourhood Search Techniques (C. Reeves T. Yamada). Parallel and Distributed Evolutionary Algorithms (M. Tomassini).
Evolutionary Multi-Criterion Optimization (K. Deb).
ACO Algorithms for the Traveling Salesman Problem (T. St?M. Dorigo).
Genetic Programming: Turing's Third Way to Achieve Machine Intelligence (J. Koza, et al.).
Automatic Synthesis of the Topology and Sizing for Analog Electrical Circuits Using Genetic Programming (F. Bennett, et al.).
APPLICATION-ORIENTED APPROACHES.
Multidisciplinary Hybrid Constrained GA Optimization (G. Dulikravich, et al.).
Genetic Algorithm as a Tool for Solving Electrical Engineering Problems (M. Rudnicki, et al.).
Genetic Algorithms in Shape Optimization: Finite and Boundary Element Applications (M. Cerrolaza W. Annicchiarico).
Genetic Algorithms and Fractals (E. Lutton).
Three Evolutionary Approaches to Clustering (H. Luchian).
INDUSTRIAL APPLICATIONS.
Evolutionary Algorithms Applied to Academic and Industrial Test Cases (T. B䣫, et al.).
Optimization of an Active Noise Control System Inside an Aircraft, Based on the Simultaneous Optimal Positioning of Microphones and Speakers, with the Use of a Genetic Algorithm (Z. Diamantis, et al.).
Generator Scheduling in Power Systems by Genetic Algorithm and Expert System (B. Galvan, et al.).
Efficient Partitioning Methods for 3-D Unstructured Grids Using Genetic Algorithms (A. Giotis, et al.).
Genetic Algorithms in Shape Optimization of a Paper Machine Headbox (J. H䭤l䩮en, et al.).
A Parallel Genetic Algorithm for Multi-Objective Optimization in Computational Fluid Dynamics (N. Marco, et al.).
Application of a Multi Objective Genetic Algorithm and a Neural Network to the Optimisation of Foundry Processes (G. Meneghetti, et al.).
Circuit Partitioning Using Evolution Algorithms (J. Montiel-Nelson, et al.).
商品描述(中文翻譯)
摘要
《工程與計算機科學中的進化演算法》編輯:K. Miettinen,芬蘭於尤維斯基拉大學;M. M. Mälä,芬蘭於尤維斯基拉大學;P. Neittaanmäki,芬蘭於尤維斯基拉大學;J. Piaux,法國達索航空。什麼是進化計算?基於DNA中編碼的遺傳訊息,以及受達爾文自然選擇進化框架啟發的數位演算法,進化計算是當今最重要的信息技術之一。進化演算法涵蓋所有自然進化系統的自適應和計算模型——遺傳演算法、進化策略、進化程式設計和遺傳程式設計。此外,它們在尋找優化問題的全局解決方案方面表現良好,允許生產出穩健且易於實施的優化軟體。此外,這些演算法可以輕鬆與傳統優化技術進行混合。本書呈現了國際學術界和工業界專家在進化計算領域的最先進講座。它將人工智慧與科學計算相結合,特別強調在航空航天、電子、電信、能源和經濟等應用導向領域中遇到的現實問題。這一快速增長的領域,對當前實踐中複雜問題的深入理解和評估,提供了一種有效的現代工程工具。因此,本書對所有面對複雜優化問題的研究生、研究科學家和實務工作者將具有重要的興趣和價值。
目錄
方法論方面。
使用遺傳演算法進行優化:技術轉移的實踐(J. Haataja)。
進化計算簡介及其一些應用(D. Fogel)。
進化計算:近期發展與未解決問題(K. De Jong)。
進化計算中的一些近期重要基礎結果(D. Fogel)。工程應用中的進化演算法(Z. Michalewicz 等)。
嵌入式路徑追蹤與鄰域搜尋技術(C. Reeves T. Yamada)。平行與分散式進化演算法(M. Tomassini)。
進化多準則優化(K. Deb)。
旅行推銷員問題的ACO演算法(T. St?M. Dorigo)。
遺傳程式設計:圖靈實現機器智慧的第三種方式(J. Koza 等)。
使用遺傳程式設計自動合成類比電路的拓撲與尺寸(F. Bennett 等)。
應用導向方法。
多學科混合約束GA優化(G. Dulikravich 等)。
遺傳演算法作為解決電氣工程問題的工具(M. Rudnicki 等)。
形狀優化中的遺傳演算法:有限與邊界元素應用(M. Cerrolaza W. Annicchiarico)。
遺傳演算法與分形(E. Lutton)。
三種進化聚類方法(H. Luchian)。
工業應用。
應用於學術與工業測試案例的進化演算法(T. B䣫 等)。
基於遺傳演算法的同時最佳定位麥克風與揚聲器的飛機內主動噪音控制系統優化(Z. Diamantis 等)。
通過遺傳演算法與專家系統進行電力系統中的發電機排程(B. Galvan 等)。
使用遺傳演算法的3D非結構網格高效劃分方法(A. Giotis 等)。
遺傳演算法在紙機進料箱形狀優化中的應用(J. H䭤l䩮en 等)。
用於計算流體力學中的多目標優化的平行遺傳演算法(N. Marco 等)。
多目標遺傳演算法與神經網絡在鑄造過程優化中的應用(G. Meneghetti 等)。
使用進化演算法的電路劃分(J. Montiel-Nelson 等)。