此商品已下架,若仍需天瓏代為查詢或代購書籍,請與門市客服人員聯繫,或 E-mail 至 service@tenlong.com.tw 將有專人為您服務。

Machine Learning: An Applied Mathematics Introduction (Paperback)
暫譯: 機器學習:應用數學入門 (平裝本)

Wilmott, Paul

  • 出版商: Panda Ohana Publishing
  • 出版日期: 2019-05-20
  • 售價: $1,010
  • 貴賓價: 9.5$960
  • 語言: 英文
  • 頁數: 242
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 1916081606
  • ISBN-13: 9781916081604
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

Machine Learning: An Applied Mathematics Introduction covers the essential mathematics behind all of the following topics

  • K Nearest Neighbours
  • K Means Clustering
  • Na ve Bayes Classifier
  • Regression Methods
  • Support Vector Machines
  • Self-Organizing Maps
  • Decision Trees
  • Neural Networks
  • Reinforcement Learning

The book includes many real-world examples from a variety of fields including

  • finance (volatility modelling)
  • economics (interest rates, inflation and GDP)
  • politics (classifying politicians according to their voting records, and using speeches to determine whether a politician is left or right wing)
  • biology (recognising flower varieties, and using heights and weights of adults to determine gender)
  • sociology (classifying locations according to crime statistics)
  • gambling (fruit machines and Blackjack)
  • business (classifying the members of his own website to see who will subscribe to his magazine )

Paul Wilmott brings three decades of experience in mathematics education, and his inimitable style, to the hottest of subjects. This book is an accessible introduction for anyone who wants to understand the foundations but also wants to "get to the meat without having to eat too many vegetables."

商品描述(中文翻譯)

《機器學習:應用數學導論》涵蓋了以下主題背後的基本數學知識:

- K 最近鄰居 (K Nearest Neighbours)
- K 均值聚類 (K Means Clustering)
- 朴素貝葉斯分類器 (Naive Bayes Classifier)
- 迴歸方法 (Regression Methods)
- 支持向量機 (Support Vector Machines)
- 自組織映射 (Self-Organizing Maps)
- 決策樹 (Decision Trees)
- 神經網絡 (Neural Networks)
- 強化學習 (Reinforcement Learning)

本書包含來自多個領域的許多實際案例,包括:

- 金融(波動性建模)
- 經濟學(利率、通脹和 GDP)
- 政治(根據投票記錄對政治人物進行分類,並利用演講來判斷政治人物是左派還是右派)
- 生物學(識別花卉品種,並利用成年人的身高和體重來判斷性別)
- 社會學(根據犯罪統計對地點進行分類)
- 賭博(水果機和二十一點)
- 商業(對自己網站的成員進行分類,以查看誰會訂閱他的雜誌)

保羅·威爾莫特(Paul Wilmott)擁有三十年的數學教育經驗,並將他獨特的風格帶入這一熱門主題。本書是任何希望理解基礎知識但又想「直接切入重點而不必吃太多蔬菜」的讀者的易讀入門書。