Fundamental Probability: A Computational Approach (Hardcover)
Marc S. Paolella
- 出版商: Wiley
- 出版日期: 2006-04-01
- 售價: $1,380
- 貴賓價: 9.8 折 $1,352
- 語言: 英文
- 頁數: 488
- 裝訂: Hardcover
- ISBN: 0470025948
- ISBN-13: 9780470025949
無法訂購
買這商品的人也買了...
-
$620$490 -
$931Foundations of Soft Case-Based Reasoning (Hardcover)
-
$650$507 -
$450$405 -
$490$382 -
$1,700$1,666 -
$1,107Image Processing: Principles and Applications (Hardcover)
-
$450$405 -
$680$578 -
$650$507 -
$620$484 -
$680$578 -
$580$458 -
$520$442 -
$880$695 -
$580$452 -
$680$537 -
$450$356 -
$620$558 -
$780$616 -
$680$578 -
$720$569 -
$990$941 -
$1,509Matrix Analysis for Statistics, 3/e (Hardcover)
-
$2,370$2,252
相關主題
商品描述
Description
Probability is a vital measure in numerous disciplines, from bioinformatics and econometrics to finance/insurance and computer science. Developed from a successful course, Fundamental Probability: A Computational Approach provides an engaging and hands-on introduction to this important topic. Whilst the theory is explored in detail, this book also emphasises practical applications, with the presentation of a large variety of examples and exercises, along with generous use of computational tools.
Based on international teaching experience with students of statistics, mathematics, finance and econometrics, the book:
- Presents new, innovative material alongside the classic theory.
- Goes beyond standard presentations by carefully introducing and discussing more complex subject matter, including a richer use of combinatorics, runs and occupancy distributions, various multivariate sampling schemes, fat-tailed distributions, and several basic concepts used in finance.
- Emphasises computational matters and programming methods via generous use of examples in MATLAB.
- Includes a large, self-contained Calculus/Analysis appendix with derivations of all required tools, such as Leibniz’ rule, exchange of derivative and integral, Fubini’s theorem, and univariate and multivariate Taylor series.
- Presents over 150 end-of-chapter exercises, graded in terms of their difficulty, and accompanied by a full set of solutions online.
This book is intended as an introduction to the theory of probability for students in biology, mathematics, statistics, economics, engineering, finance, and computer science who possess the prerequisite knowledge of basic calculus and linear algebra.
Table of Contents
Preface.
A note to the student (and instructor).
A note to the instructor (and student).
Acknowledgements.
Introduction.
PART I: BASIC PROBABILITY.
1. Combinatorics.
1.1 Basic counting.
1.2 Generalized binomial coefficients.
1.3 Combinatoric identities and the use of induction.
1.4 The binomial and multinomial theorems.
1.4.1 The binomial theorem.
1.4.2 An extension of the binomial theorem.
1.4.3 The multinomial theorem.
1.5 The gamma and beta functions.
1.5.1 The gamma function.
1.5.2 The beta function.
1.6 Problems.
2. Probability spaces and counting.
2.1 Introducing counting and occupancy problems.
2.2 Probability spaces.
2.2.1 Introduction.
2.2.2 Definitions.
2.3 Properties.
2.3.1 Basic properties.
2.3.2 Advanced properties.
2.3.3 A theoretical property.
2.4 Problems.
3. Symmetric spaces and conditioning.
3.1 Applications with symmetric probability spaces.
3.2 Conditional probability and independence.
3.2.1 Total probability and Bayes’ rule.
3.2.2 Extending the law of total probability.
3.2.3 Statistical paradoxes and fallacies.
3.3 The problem of the points.
3.3.1 Three solutions.
3.3.2 Further gambling problems.
3.3.3 Some historical references.
3.4 Problems.
PART II: DISCRETE RANDOM VARIABLES.
4. Univariate random variables.
4.1 Definitions and properties.
4.1.1 Basic definitions and properties.
4.1.2 Further definitions and properties.
4.2 Discrete sampling schemes.
4.2.1 Bernoulli and binomial.
4.2.2 Hypergeometric.
4.2.3 Geometric and negative binomial.
4.2.4 Inverse hypergeometric.
4.2.5 Poisson approximations.
4.2.6 Occupancy distributions.
4.3 Transformations.
4.4 Moments.
4.4.1 Expected value of X.
4.4.2 Higher-order moments.
4.4.3 Jensen?s inequality.
4.5 Poisson processes.
4.6 Problems.
5. Multivariate random variables.
5.1 Multivariate density and distribution.
5.1.1 Joint cumulative distribution functions.
5.1.2 Joint probability mass and density functions.
5.2 Fundamental properties of multivariate random variables.
5.2.1 Marginal distributions.
5.2.2 Independence.
5.2.3 Exchangeability.
5.2.4 Transformations.
5.2.5 Moments.
5.3 Discrete sampling schemes.
5.3.1 Multinomial.
5.3.2 Multivariate hypergeometric.
5.3.3 Multivariate negative binomial.
5.3.4 Multivariate inverse hypergeometric.
5.4 Problems.
6. Sums of random variables.
6.1 Mean and variance.
6.2 Use of exchangeable Bernoulli random variables.
6.2.1 Examples with birthdays.
6.3 Runs distributions.
6.4 Random variable decomposition.
6.4.1 Binomial, negative binomial and Poisson.
6.4.2 Hypergeometric.
6.4.3 Inverse hypergeometric.
6.5 General linear combination of two random variables.
6.6 Problems.
PART III: CONTINUOUS RANDOM VARIABLES.
7. Continuous univariate random variables.
7.1 Most prominent distributions.
7.2 Other popular distributions.
7.3 Univariate transformations.
7.3.1 Examples of one-to-one transformations.
7.3.2 Many-to-one transformations.
7.4 The probability integral transform.
7.4.1 Simulation.
7.4.2 Kernel density estimation.
7.5 Problems.
8. Joint and conditional random variables.
8.1 Review of basic concepts.
8.2 Conditional distributions.
8.2.1 Discrete case.
8.2.2 Continuous case.
8.2.3 Conditional moments.
8.2.4 Expected shortfall.
8.2.5 Independence.
8.2.6 Computing probabilities via conditioning.
8.3 Problems.
9. Multivariate transformations.
9.1 Basic transformation.
9.2 The t and F distributions.
9.3 Further aspects and important transformations.
9.4 Problems.
Appendix A. Calculus review.
A.0 Recommended reading.
A.1 Sets, functions and fundamental inequalities.
A.2 Univariate calculus.
A.2.1 Limits and continuity.
A.2.2 Differentiation.
A.2.3 Integration.
A.2.4 Series.
A.3 Multivariate calculus.
A.3.1 Neighborhoods and open sets.
A.3.2 Sequences, limits and continuity.
A.3.3 Differentiation.
A.3.4 Integration.
Appendix B. Notation tables.
Appendix C. Distribution tables.
References.
Index.
商品描述(中文翻譯)
描述
概率是許多學科中的重要指標,從生物信息學和計量經濟學到金融/保險和計算機科學。《基礎概率:計算方法》是根據一門成功的課程開發而成,提供了一個引人入勝且實踐性的介紹。雖然詳細探討了理論,但本書還強調實際應用,並提供了大量的例子和練習,並廣泛使用計算工具。
基於對統計學、數學、金融和計量經濟學學生的國際教學經驗,本書具有以下特點:
- 提供了一個全面的概率介紹,包括基本概念和技巧。
- 強調實際應用,並提供了豐富的例子和練習。
- 使用計算工具來幫助讀者理解和應用概率概念。
- 適用於統計學、數學、金融和計量經濟學等專業的學生。
這本書將幫助讀者建立對概率的深入理解,並學會應用概率在不同領域中解決問題。無論是學生還是專業人士,都可以從這本書中獲得寶貴的知識和技能。