Introduction to the Mathematical and Statistical Foundations of Econometrics
暫譯: 計量經濟學的數學與統計基礎導論

Herman J. Bierens

  • 出版商: Cambridge
  • 出版日期: 2004-12-20
  • 售價: $882
  • 語言: 英文
  • 頁數: 344
  • 裝訂: Paperback
  • ISBN: 0521542243
  • ISBN-13: 9780521542241
  • 已絕版

商品描述

Description:

The focus of this book is on clarifying the mathematical and statistical foundations of econometrics. Therefore, the text provides all the proofs, or at least motivations if proofs are too complicated, of the mathematical and statistical results necessary for understanding modern econometric theory. In this respect, it differs from other econometrics textbooks.

 

Table of Contents:

1. Probability and measure: 1.1 The Texas lotto; 1.2 Quality control; 1.3 Why do we need sigma-algebras of events?; 1.4 Properties of algebras and sigma-algebras; 1.5 Properties of probability measures; 1.6 The uniform probability measures; 1.7 Lebesque measure and Lebesque integral; 1.8 Random variables and their distributions; 1.9 Density functions; 1.10 Conditional probability, Bayes’s rule, and independence; 1.11 Exercises; 1.A Common structure of the proofs of Theorems 6 and 10; 1.B Extension of an outer measure to a probability measure; 2. Borel measurability, integration, and mathematical expectations: 2.1 Introduction; 2.2 Borel measurability; 2.3 Integral of Borel measurable functions with respect to a probability measure; 2.4 General measurability and integrals of random variables with respect to probability measures; 2.5 Mathematical expectation; 2.6 Some useful inequalities involving mathematical expectations; 2.7 Expectations of products of independent random variables; 2.8 Moment generating functions and characteristic functions; 2.9 Exercises; 2.A Uniqueness of characteristic functions; 3. Conditional expectations: 3.1 Introduction; 3.2 Properties of conditional expectations; 3.3 Conditional probability measures and conditional independence; 3.4 Conditioning on increasing sigma-algebras; 3.5 Conditional expectations as the best forecast schemes; 3.6 Exercises; 3.A Proof of theorem 3.12; 4. Distributions and transformations: 4.1 Discrete distributions; 4.2 Transformations of discrete random vectors; 4.3 Transformations of absolutely continuous random variables; 4.4 Transformations of absolutely continuous random vectors; 4.5 The normal distribution; 4.6 Distributions related to the normal distribution; 4.7 The uniform distribution and its relation to the standard normal distribution; 4.8 The gamma distribution; 4.9 Exercises; 4.A Tedious derivations; 4.B Proof of theorem 4.4; 5. The multivariate normal distribution and its application to statistical inference; 5.1 Expectation and variance of random vectors; 5.2 The multivariate normal distribution; 5.3 Conditional distributions of multivariate normal random variables; 5.4 Independence of linear and quadratic transformations of multivariate normal random variables; 5.5 Distribution of quadratic forms of multivariate normal random variables; 5.6 Applications to statistical inference under normality; 5.7 Applications to regression analysis; 5.8 Exercises; 5.A Proof of theorem 5.8; 6. Modes of convergence: 6.1 Introduction; 6.2 Convergence in probability and the weak law of large numbers; 6.3 Almost sure convergence, and the strong law of large numbers; 6.4 The uniform law of large numbers and its applications; 6.5 Convergence in distribution; 6.6 Convergence of characteristic functions; 6.7 The central limit theorem; 6.8 Stochastic boundedness, tightness, and the Op and op-notations; 6.9 Asymptotic normality of M-estimators; 6.10 Hypotheses testing; 6.11 Exercises; 6.A Proof of the uniform weak law of large numbers; 6.B Almost sure convergence and strong laws of large numbers; 6.C Convergence of characteristic functions and distributions; 7. Dependent laws of large numbers and central limit theorems: 7.1 Stationary and the world decomposition; 7.2 Weak laws of large numbers for stationary processes; 7.3 Mixing conditions; 7.4 Uniform weak laws of large numbers; 7.5 Dependent central limit theorems; 7.6 Exercises; 7.A Hilbert spaces; 8. Maximum likelihood theory; 8.1 Introduction; 8.2 Likelihood functions; 8.3 Examples; 8.4 Asymptotic properties if ML estimators; 8.5 Testing parameter restrictions; 8.6 Exercises.

商品描述(中文翻譯)

描述:
本書的重點在於澄清計量經濟學的數學和統計基礎。因此,文本提供了所有必要的數學和統計結果的證明,或者至少在證明過於複雜的情況下提供動機,以便理解現代計量經濟學理論。在這方面,它與其他計量經濟學教科書有所不同。

目錄:
1. 機率與測度:1.1 德州樂透;1.2 品質控制;1.3 為什麼我們需要事件的σ-代數?;1.4 代數和σ-代數的性質;1.5 機率測度的性質;1.6 均勻機率測度;1.7 Lebesgue測度和Lebesgue積分;1.8 隨機變數及其分佈;1.9 密度函數;1.10 條件機率、貝葉斯法則和獨立性;1.11 練習;1.A 定理6和10的證明的共同結構;1.B 將外部測度擴展為機率測度;2. Borel可測性、積分和數學期望:2.1 介紹;2.2 Borel可測性;2.3 相對於機率測度的Borel可測函數的積分;2.4 一般可測性和相對於機率測度的隨機變數的積分;2.5 數學期望;2.6 一些涉及數學期望的有用不等式;2.7 獨立隨機變數的乘積的期望;2.8 矩生成函數和特徵函數;2.9 練習;2.A 特徵函數的唯一性;3. 條件期望:3.1 介紹;3.2 條件期望的性質;3.3 條件機率測度和條件獨立性;3.4 在增長的σ-代數上進行條件化;3.5 將條件期望作為最佳預測方案;3.6 練習;3.A 定理3.12的證明;4. 分佈與變換:4.1 離散分佈;4.2 離散隨機向量的變換;4.3 絕對連續隨機變數的變換;4.4 絕對連續隨機向量的變換;4.5 正態分佈;4.6 與正態分佈相關的分佈;4.7 均勻分佈及其與標準正態分佈的關係;4.8 伽瑪分佈;4.9 練習;4.A 繁瑣的推導;4.B 定理4.4的證明;5. 多變量正態分佈及其在統計推斷中的應用;5.1 隨機向量的期望和方差;5.2 多變量正態分佈;5.3 多變量正態隨機變數的條件分佈;5.4 多變量正態隨機變數的線性和二次變換的獨立性;5.5 多變量正態隨機變數的二次型分佈;5.6 在正態性下的統計推斷應用;5.7 在回歸分析中的應用;5.8 練習;5.A 定理5.8的證明;6. 收斂模式:6.1 介紹;6.2 機率收斂和大數法則的弱法則;6.3 幾乎確定收斂和大數法則的強法則;6.4 大數法則的均勻法則及其應用;6.5 分佈收斂;6.6 特徵函數的收斂;6.7 中心極限定理;6.8 隨機有界性、緊性及Op和op符號;6.9 M-估計量的漸近正態性;6.10 假設檢定;6.11 練習;6.A 均勻弱大數法則的證明;6.B 幾乎確定收斂和強大數法則;6.C 特徵函數和分佈的收斂;7. 依賴的大數法則和中心極限定理:7.1 平穩性和世界分解;7.2 平穩過程的弱大數法則;7.3 混合條件;7.4 均勻弱大數法則;7.5 依賴的中心極限定理;7.6 練習;7.A 希爾伯特空間;8. 最大似然理論;8.1 介紹;8.2 似然函數;8.3 範例;8.4 最大似然估計量的漸近性質;8.5 測試參數限制;8.6 練習。