Image Processing: Principles and Applications (Hardcover)
暫譯: 影像處理:原則與應用(精裝版)
Tinku Acharya, Ajoy K. Ray
- 出版商: Wiley
- 出版日期: 2005-08-01
- 售價: $1,107
- 語言: 英文
- 頁數: 448
- 裝訂: Hardcover
- ISBN: 0471719986
- ISBN-13: 9780471719984
無法訂購
買這商品的人也買了...
-
$1,590$1,511 -
$450$383 -
$980$960 -
$931Foundations of Soft Case-Based Reasoning (Hardcover)
-
$450$356 -
$520$411 -
$1,700$1,666 -
$880$695 -
$390$308 -
$890$757 -
$780$741 -
$780$663 -
$600$510 -
$390$308 -
$650$507 -
$550$435 -
$980$774 -
$420$399 -
$1,380$1,352 -
$500$450 -
$620$490 -
$880$695 -
$1,010$960 -
$1,509Matrix Analysis for Statistics, 3/e (Hardcover)
-
$2,420$2,299
商品描述
Description
Image processing—from basics to advanced applications
Learn how to master image processing and compression with this outstanding state-of-the-art reference. From fundamentals to sophisticated applications, Image Processing: Principles and Applications covers multiple topics and provides a fresh perspective on future directions and innovations in the field, including:
- Image transformation techniques, including wavelet transformation and developments
- Image enhancement and restoration, including noise modeling and filtering
- Segmentation schemes, and classification and recognition of objects
- Texture and shape analysis techniques
- Fuzzy set theoretical approaches in image processing, neural networks, etc.
- Content-based image retrieval and image mining
- Biomedical image analysis and interpretation, including biometric algorithms such as face recognition and signature verification
- Remotely sensed images and their applications
- Principles and applications of dynamic scene analysis and moving object detection and tracking
- Fundamentals of image compression, including the JPEG standard and the new JPEG2000 standard
Additional features include problems and solutions with each chapter to help you apply the theory and techniques, as well as bibliographies for researching specialized topics. With its extensive use of examples and illustrative figures, this is a superior title for students and practitioners in computer science, wireless and multimedia communications, and engineering.
Preface.
1. Introduction.
1.1 Fundamentals of Image Processing.
1.2 Applications of Image Processing.
1.2.1 Automatic visual inspection system.
1.2.2 Remotely sensed scene interpretation.
1.2.3 Biomedical Imaging Techniques.
1.2.4 Defence surveillance.
1.2.5 Moving Object tracking.
1.3 Human Visual Perception.
1.3.1 Eyes detect motion.
1.3.2 Structure of Eyes.
1.3.3 Nervous Aspects of the Visual Sense.
1.3.4 Intuitionistic Philosophy.
1.3.5 Gray and Color Perception.
1.4 Components of an Image Processing System.
1.4.1 Digital Camera.
1.4.2 Capturing Colors.
1.5 Organization of this book.
1.6 How is this book different ? 16.
1.7 Summary 17.
References 17.
2. Image Formation and Representation.
2.1 Introduction.
2.2 Image formation.
2.2.1 Illumination.
2.2.2 Reflectance Models.
2.3 Sampling and Quantization.
2.3.1 Image Quantization.
2.4 Binary Image.
2.4.1 Geometric properties.
2.5 Connected component labeling.
2.5.1 Three Dimensional imaging.
2.5.2 Stereo images.
2.5.3 Point Spread Function.
2.6 Image fled formats.
2.7 Some Important Notes.
2.8 Types of Image Processing Operations.
2.9 Summary.
References.
3. Color and Color Imagery.
3.1 Introduction.
3.2 Perception of Colors and Spectral sensitivity of human eyes.
3.3 Color Space Quantization and the Just Noticeable Difference.
(JND).
3.3.1 Need for color spaces.
3.4 Color Space and Transformation.
3.4.1 CMYK space.
3.4.2 NTSC or YIQ color space.
3.4.3 Y CbCr color space.
3.4.4 Perceptually uniform color space.
3.4.5 Need for perceptually uniform color space.
3.4.6 CIELAB color Space.
3.5 Color Interpolation or Demosaicing.
3.5.1 Non-adaptive color interpolation algorithms.
3.5.2 Adaptive algorithms.
3.5.3 A Fuzzy Assignment Based Adaptive Algorithm.
3.5.4 Experimental Results.
3.6 Summary.
References.
4. Image Transformation.
4.1 Introduction.
4.2 Fourier Transforms.
4.2.1 One-Dimensional Fourier Transform.
4.2.2 Two-Dimensional Fourier Transform.
4.2.3 Discrete Fourier Transforms (DFT).
4.2.4 Transformation Kernels.
4.2.5 Matrix Form Representation.
4.2.6 Properties.
4.2.7 Fast Fourier Transforms.
4.3 Discrete Cosine Transform.
4.4 Walsh Hadamard Transform (WHT).
4.5 Karhaunen-Loeve Transform or Principal Component Analysis.
4.5.1 Covariance Matrix.
4.5.2 Eigen vector and Eigen values.
4.5.3 Principal Component Analysis.
4.5.4 Singular Value Decomposition.
4.6 Summary.
References.
5. Discrete Wavelet Transform.
5.1 Introduction.
5.2 Wavelet Transforms.
5.2.1 Discrete Wavelet Transforms.
5.2.2 Concept of Multiresolution Analysis.
5.2.3 Implementation by Filters and the Pyramid Algorithm.
5.3 Extension to Two-Dimensional Signals.
5.4 Lifting Implementation of the DWT.
5.4.1 Finite Impulse Response Filter and Z-transform.
5.4.2 Euclidean Algorithm for Laurent Polynomials.
5.4.3 Perfect Reconstruction and Polyphase Representation of Filters.
5.4.4 Lifting.
5.4.5 Data Dependency Diagram for Lifting Computation.
5.5 Why Do We Care About Lifting?
5.6 Applications Areas in Image Processing.
5.7 Summary.
References.
6. Image Enhancement and Restoration.
6.1 Introduction.
6.2 Distinction between image enhancement and restoration.
6.3 Spatial Image Enhancement Techniques.
6.3.1 Unsharp Masking and Crisping.
6.3.2 Spatial Low Pass and High Pass Filtering.
6.3.3 Image Contrast Enhancement.
6.3.4 Local Area Histogram Equalization.
6.3.5 Histogram Hyperbolization.
6.3.6 Arithmatic/Logic operation for Enhancement.
6.4 Noise Filtering.
6.5 Image Enhancement - Frequency Domain approach.
6.5.1 Averaging and Spatial Low Pass Filtering.
6.5.2 Directional Smoothing.
6.5.3 Median Filtering.
6.5.4 Homomorphic Filter.
6.6 Noise Modeling.
6.6.1 Types of Noise in an Image and Their Characteristics.
6.7 Image Restoration.
6.7.1 Image Restoration of impulse noise embedded images.
6.7.2 Restoration of blurred image.
6.7.3 Inverse Filtering.
6.7.4 Wiener Filter.
6.7.5 Singular Value Decomposition.
6.8 Summary.
References.
7. Image Segmentation.
7.1 Preliminaries.
7.2 Edge, Line, and Point Detection.
7.3 Edge Detector.
7.3.1 Robert Operator Based Edge Detector.
7.3.2 Sobel Operator Based Edge Detector.
7.3.3 Prewitt Operator Based Edge Detector.
7.3.4 Kirsch operator.
7.3.5 Canny's Edge Detector.
7.3.6 Operators Based on Second Derivative.
7.4 Image Thresholding Techniques.
7.4.1 Problems encountered and possible solutions.
7.4.2 Entropy Based Thresholding.
7.4.3 Region Growing.
7.4.4 Clustering of Multiband images.
7.5 Color Image Segmentation.
7.6 Waterfall algorithm for segmentation.
7.7 Document Image segmentation.
7.7.1 Match-based segmentation.
7.8 Summary.
References.
8. Recognition of Image Patterns.
8.1 Introduction.
8.1.1 Decision Theoretic Pattern Classification.
8.2 Bayesian Decision Theory.
8.2.1 Parameter estimation.
8.2.2 Minimum Distance Classification.
8.3 Non-parametric Classification.
8.3.1 K-Nearest-Neighbor Classification.
8.4 Unsupervised Classification Strategies - clustering.
8.4.1 Single Linkage Clustering.
8.4.2 Complete Linkage clustering.
8.4.3 Average Linkage Clustering.
8.5 K-means Clustering Algorithm.
8.5.1 Syntactic Pattern Classification.
8.6 Primitive selection Strategies.
8.7 High Dimensional Pattern Grammars.
8.8 Formal Linguistic model.
8.9 Automata Theory.
8.9.1 Grammatical Inference.
8.10 Structural recognition of imprecise Patterns.
8.11 Symbolic Projection Method.
8.12 Classification using Neural Networks.
8.12.1 Error Backpropagation.
8.13 Crisp Neural Networks For Scene Classification.
8.14 Architecture of Back propagation network.
8.14.1 Kohonen's Self-Organizing Feature Map.
8.14.2 Counter propagation Neural Network.
8.15 Research Direction.
8.16 Summary.
References.
9. Texture and Shape Analysis.
9.1 Introduction.
9.1.1 Classification of textures.
9.1.2 Discriminatory Power of Co-occurrence matrix.
9.2 Drawbacks of Grey Level Co-occurrence Matrix (GLCM).
9.2.1 Tone and Texture.
9.2.2 Weak and Strong Textures.
9.2.3 Primitives.
9.3 Spatial Relationship.
9.4 Weak Texture Measures.
9.5 Strong Texture Measures and Generalized Co-occurrence.
9.6 Texture Spectrum.
9.7 Texture Classification using Fractals.
9.7.1 Fractal lines and shapes.
9.8 Fractals in Texture Classification.
9.8.1 Computing fractal Dimension using Covering Blanket method.
9.9 Structural Methods.
9.10 Shape Analysis.
9.10.1 Polygon as shape Descriptor.
9.11 Dominant points in Shape Description.
9.11.1 Freeman Chain Code.
9.11.2 Curvature and its role in shape determination.
9.12 Polygonal Approximation for Shape Analysis.
9.13 Automatic recognition of Guns.
9.13.1 The Polygonal Approximation.
9.14 Active Contour modeling.
9.15 Gestalt Theory of Perception.
9.16 Summary.
References.
10. Fuzzy Set Theory in Image Processing.
10.1 Introduction to Fuzzy Set Theory.
10.2 Why Fuzzy Image?
10.3 Introduction to Fuzzy Set Theory.
10.4 Preliminaries and Background.
10.4.1 Fuzzication.
10.4.2 Basic Terms and Operations.
10.5 Image as a Fuzzy Set.
10.5.1 Selection of the Membership Function.
10.6 Fuzzy Methods of Contrast Enhancement.
10.6.1 Contrast Enhancement Using Fuzzifier[7, 8].
10.6.2 Asymmetry S function [3].
10.7 Determination of the Fuzzication Parameters.
10.8 Results.
10.9 Fuzzy Spatial Filter for Noise Removal.
10.10 Smoothing Algorithm.
10.11 Fuzzy Histogram Modeling.
10.11.1Fuzzy histogram Specification Based on Local.
Information.
10.11.2Fuzzy Histogram Modeling Predicting Missing or.
Imprecise Grey Levels.
10.12 Image Segmentation using Fuzzy Methods.
10.12.1 Image Segmentation by Fuzzy Methods.
10.13 Fuzzy C Means Algorithm.
10.14 Fuzzy Approaches to Pattern Recognition.
10.15 Fusion of fuzzy logic with neural networks.
10.15.1Fuzzy MLP with back propagation learning.
10.16 Summary.
References.
11. Image Mining and Content Based Image Retreival.
11.1 Introduction.
11.2 Representation of images in a CBIR System.
11.2.1 Color Histogram based representation.
11.2.2 Partition based representation.
11.2.3 Regional Approach for image representation.
11.3 Model of a image retrieval system.
11.4 Image Mining.
11.4.1 Color features.
11.4.2 Texture features.
11.4.3 Shape features.
11.4.4 Topology.
11.4.5 Multidimensional indexing.
11.4.6 Results of a simple CBIR system.
11.5 Video Mining.
11.5.1 MPEG-7: Multimedia content description interface.
11.5.2 Content-based video retrieval system.
11.6 Summary.
References.
12. Biometric And Biomedical Image Processing.
12.1 Introduction.
12.2 Face Recognition.
12.2.1 Feature selection.
12.2.2 Extraction of front facial features.
12.2.3 Extraction of side facial features.
12.2.4 Extraction of features.
12.2.5 Face Identification.
12.3 Face Recognition Using Eigenfaces.
12.4 Signature Verification.
12.5 Preprocessing of Signature Patterns.
12.5.1 Feature Extraction.
12.6 Biomedical Image Analysis.
12.6.1 Macroscopic Image Analysis.
12.7 X - ray Image Analysis.
12.7.1 Bone disease Identification.
12.8 Uses of X-ray images.
12.9 Biomedical Imaging Techniques.
12.9.1 Magnetic Resonance Imaging (MRI).
12.9.2 Computed Axial Tomography.
12.9.3 x-ray images for lung disease identification.
12.9.4 x-ray images for Heart disease identification.
12.9.5 x-ray images for Congenital Heart Disease.
12.9.6 Enhancement of chest radiographs using gradient operators.
12.9.7 Adaptive Image Enhancement for Enhancement for chest X-ray images.
12.9.8 A Fuzzy based image enhancement technique for chest radiographs.
12.10 Dental x-ray image analysis.
12.10.1 classification of dental caries.
12.11 Mammogram Image Analysis.
12.11.1 Enhancement of Mammograms.
12.11.2 Smoothing algorithm.
12.11.3 Suspicious Area Detection.
12.11.4 Feature Selection and Extraction.
12.11.5 Important Features of the System.
12.11.6 Wavelet analysis of medical mammogram image.
12.12 Research direction.
12.13 Summary.
References.
13. Remotely Sensed Multispectral Scene Analysis.
13.1 Introduction.
13.2 Satellite sensors and imageries.
13.3 Features of Multispectral Images.
13.3.1 Data Formats For Digital Satellite Imagery.
13.3.2 Distortions and Corrections.
13.4 Spectral reflectance of various earth objects.
13.4.1 Water regions.
13.4.2 Vegetation Regions.
13.4.3 Soil.
13.4.4 Man-made/Artificial Objects.
13.5 Scene Classification Strategies.
13.5.1 Neural Network based Classifier using Error Back Propagation.
13.5.2 Counter propagation network.
13.5.3 Experiments and Results.
13.6 Spectral classification - A knowledge Based Approach.
13.6.1 Spectral information of natural/man-made objects.
13.6.2 Training site selection and feature extraction.
13.6.3 System Implementation.
13.6.4 Feature representation.
13.6.5 Rule Based Development.
13.7 Spatial Reasoning.
13.7.1 Evidence Accumulation.
13.7.2 Spatial rule Generation.
13.8 Fuzzy Set Theoretic Approaches in Remote Sensing.
13.9 Summary.
References.
14. Dynamic Scene Analysis: Moving Object Detection and Tracking.
14.1 Introduction.
14.2 Problem Definition.
14.3 Adaptive Background Modelling.
14.3.1 Basic Background modelling strategy.
14.3.2 A Robust Method of Background Modelling.
14.3.3 Background Model Estimation.
14.4 Connected Component Labeling.
14.5 Shadow Detection.
14.6 Principles of object Tracking.
14.7 Model of Tracker System.
14.8 Condensation Algorithm.
14.9 Particle Filter Based object Tracking.
14.9.1 Particle Attributes.
14.9.2 Particle Filter Algorithm.
14.9.3 Results of Object Tracking.
14.10 Summary.
References.
15. Introduction to Image Compression.
15.1 Introduction.
15.2 Information Theory Concepts.
15.2.1 Discrete Memoryless Model and Entropy.
15.2.2 Noiseless Source Coding Theorem.
15.2.3 Unique Decipherability.
15.3 Classification of Compression algorithms.
15.4 Source Coding Algorithms.
15.4.1 Run-length Coding.
15.5 Huffman Coding.
15.6 Arithmetic Coding.
15.6.1 Encoding Algorithm.
15.6.2 Decoding Algorithm.
15.6.3 The QM-Coder.
15.7 Summary.
References.
16. JPEG: Still Image Compression Standard.
16.1 Introduction.
16.2 The JPEG Lossless Coding Algorithm.
16.3 Baseline JPEG Compression.
16.3.1 Color Space Conversion.
16.3.2 Source Image Data Arrangement.
16.3.3 The Baseline Compression Algorithm.
16.3.4 Coding the DCT Coefficients.
16.4 Summary.
References.
17. JPEG2000 Standard.
17.1 Introduction.
17.2 Why JPEG2000?
17.3 Parts of the JPEG2000 Standard.
17.4 Overview of the JPEG2000 Part 1 Encoding System.
17.5 Image Preprocessing.
17.5.1 Tiling.
17.5.2 DC Level Shifting.
17.5.3 Multi-component Transformations.
17.6 Compression.
17.6.1 Discrete Wavelet Transformation.
17.6.2 Quantization.
17.6.3 Region of Interest Coding.
17.6.4 Rate Control.
17.6.5 Entropy Encoding.
17.7 Tier-2 Coding and Bitstream Formation.
17.8 Summary.
References.
18. Coding Algorithms in JPEG2000.
18.1 Introduction.
18.2 Partitioning Data for Coding.
18.3 Tier-1 Coding in JPEG2000.
18.3.1 Fractional Bit-Plane Coding.
18.3.2 Examples of BPC Encoder.
18.3.3 Binary Arithmetic Coding--MQ-Coder.
18.4 Tier-2 Coding in JPEG2000.
18.4.1 Bitstream Formation.
18.4.2 Packet Header Information Coding.
18.5 Summary.
References.
Index.
About the Authors.
商品描述(中文翻譯)
描述
影像處理—從基礎到進階應用
學習如何掌握影像處理和壓縮技術,這本卓越的尖端參考書將帶您從基本概念到複雜應用。《影像處理:原理與應用》涵蓋多個主題,並提供對該領域未來方向和創新的新視角,包括:
- 影像轉換技術,包括小波轉換及其發展
- 影像增強與修復,包括噪聲建模和過濾
- 分割方案,以及物體的分類和識別
- 紋理和形狀分析技術
- 影像處理中的模糊集合理論方法、神經網絡等
- 基於內容的影像檢索和影像挖掘
- 生物醫學影像分析與解釋,包括面部識別和簽名驗證等生物識別算法
- 遙感影像及其應用
- 動態場景分析和移動物體檢測與追蹤的原理與應用
- 影像壓縮的基本原理,包括JPEG標準和新的JPEG2000標準
其他特色包括每章的問題與解答,幫助您應用理論和技術,以及專題研究的參考書目。這本書廣泛使用範例和插圖,是計算機科學、無線和多媒體通信及工程領域的學生和從業者的優質選擇。
目錄
前言。
1. 介紹。
1.1 影像處理的基本原理。
1.2 影像處理的應用。
1.2.1 自動視覺檢查系統。
1.2.2 遙感場景解釋。
1.2.3 生物醫學影像技術。
1.2.4 防衛監控。
1.2.5 移動物體追蹤。
1.3 人類視覺感知。
1.3.1 眼睛檢測運動。
1.3.2 眼睛的結構。
1.3.3 視覺感知的神經方面。
1.3.4 直觀哲學。
1.3.5 灰色和顏色感知。
1.4 影像處理系統的組成部分。
1.4.1 數位相機。
1.4.2 捕捉顏色。
1.5 本書的組織。
1.6 本書有何不同?
1.7 總結。
參考文獻。
2. 影像形成與表示。
2.1 介紹。
2.2 影像形成。
2.2.1 照明。
2.2.2 反射模型。
2.3 取樣與量化。
2.3.1 影像量化。
2.4 二元影像。
2.4.1 幾何特性。
2.5 連通元件標記。
2.5.1 三維影像。
2.5.2 立體影像。
2.5.3 點擴散函數。
2.6 影像檔格式。
2.7 一些重要的注意事項。
2.8 影像處理操作的類型。
2.9 總結。
參考文獻。
3. 顏色與顏色影像。
3.1 介紹。
3.2 顏色的感知與人眼的光譜敏感度。
3.3 顏色空間量化與剛好可察覺的差異 (JND)。
3.3.1 顏色空間的需求。
3.4 顏色空間與轉換。
3.4.1 CMYK空間。
3.4.2 NTSC或YIQ顏色空間。
3.4.3 Y CbCr顏色空間。
3.4.4 感知均勻顏色空間。
3.4.5 感知均勻顏色空間的需求。
3.4.6 CIELAB顏色空間。
3.5 顏色插值或去馬賽克。
3.5.1 非自適應顏色插值算法。
3.5.2 自適應算法。
3.5.3 基於模糊分配的自適應算法。
3.5.4 實驗結果。
3.6 總結。
參考文獻。
4. 影像轉換。
4.1 介紹。
4.2 傅立葉轉換。
4.2.1 一維傅立葉轉換。
4.2.2 二維傅立葉轉換。
4.2.3 離散傅立葉轉換 (DFT)。
4.2.4 轉換核。
4.2.5 矩陣形式表示。
4.2.6 性質。
4.2.7 快速傅立葉轉換。
4.3 離散餘弦轉換。
4.4 Walsh-Hadamard轉換 (WHT)。
4.5 Karhunen-Loeve轉換或主成分分析。
4.5.1 協方差矩陣。
4.5.2 特徵向量和特徵值。
4.5.3 主成分分析。
4.5.4 奇異值分解。
4.6 總結。
參考文獻。
5. 離散小波轉換。
5.1 介紹。
5.2 小波轉換。
5.2.1 離散小波轉換。
5.2.2 多解析度分析的概念。
5.2.3 通過濾波器和金字塔算法的實現。
5.3 擴展到二維信號。
5.4 DWT的提升實現。
5.4.1 有限脈衝響應濾波器和Z變換。
5.4.2 劉朗多項式的歐幾里得算法。
5.4.3 完美重建和濾波器的多相表示。
5.4.4 提升。
5.4.5 提升計算的數據依賴圖。
5.5 我們為什麼關心提升?
5.6 影像處理中的應用領域。
5.7 總結。
參考文獻。
6. 影像增強與修復。
6.1 介紹。
6.2 影像增強與修復的區別。
6.3 空間影像增強技術。
6.3.1 鈍化遮罩和清晰化。
6.3.2 空間低通和高通過濾。
6.3.3 影像對比度增強。
6.3.4 局部直方圖均衡化。
6.3.5 直方圖超曲化。
6.3.6 增強的算術/邏輯運算。