Guide to Teaching Data Science: An Interdisciplinary Approach
Hazzan, Orit, Mike, Koby
- 出版商: Springer
- 出版日期: 2024-03-22
- 售價: $2,180
- 貴賓價: 9.5 折 $2,071
- 語言: 英文
- 頁數: 321
- 裝訂: Quality Paper - also called trade paper
- ISBN: 3031247604
- ISBN-13: 9783031247606
-
相關分類:
Data Science
海外代購書籍(需單獨結帳)
相關主題
商品描述
Data science is a new field that touches on almost every domain of our lives, and thus it is taught in a variety of environments. Accordingly, the book is suitable for teachers and lecturers in all educational frameworks: K-12, academia and industry.
This book aims at closing a significant gap in the literature on the pedagogy of data science. While there are many articles and white papers dealing with the curriculum of data science (i.e., what to teach?), the pedagogical aspect of the field (i.e., how to teach?) is almost neglected. At the same time, the importance of the pedagogical aspects of data science increases as more and more programs are currently open to a variety of people.
This book provides a variety of pedagogical discussions and specific teaching methods and frameworks, as well as includes exercises, and guidelines related to many data science concepts (e.g., data thinking and the data science workflow), main machine learning algorithms and concepts (e.g., KNN, SVM, Neural Networks, performance metrics, confusion matrix, and biases) and data science professional topics (e.g., ethics, skills and research approach).
Professor Orit Hazzan is a faculty member at the Technion's Department of Education in Science and Technology since October 2000. Her research focuses on computer science, software engineering and data science education. Within this framework, she studies the cognitive and social processes on the individual, the team and the organization levels, in all kinds of organizations.
Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his post-doc research on data science education at the Bar-Ilan University, and obtained a B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University.
商品描述(中文翻譯)
資料科學是一個新興領域,幾乎觸及我們生活的每個領域,因此它在各種環境中被教授。因此,本書適合所有教育框架中的教師和講師:K-12、學術界和產業界。
本書旨在填補資料科學教學法文獻中的一個重要空白。雖然有許多文章和白皮書探討資料科學的課程(即,教什麼?),但該領域的教學法方面(即,怎麼教?)幾乎被忽視。與此同時,隨著越來越多的計畫向各種人群開放,資料科學的教學法重要性也在增加。
本書提供了多種教學法討論和具體的教學方法與框架,並包含與許多資料科學概念(例如,資料思維和資料科學工作流程)、主要機器學習演算法和概念(例如,KNN、SVM、神經網絡、性能指標、混淆矩陣和偏見)以及資料科學專業主題(例如,倫理、技能和研究方法)相關的練習和指導方針。
Orit Hazzan 教授自2000年10月以來一直是以色列理工學院科學與技術教育系的教職員。她的研究專注於計算機科學、軟體工程和資料科學教育。在這個框架內,她研究個人、團隊和組織層級的認知和社會過程,涵蓋各種組織。
Koby Mike 博士是以色列理工學院科學與技術教育系的博士畢業生,指導教授為 Orit Hazzan 教授。他在巴伊蘭大學繼續進行資料科學教育的博士後研究,並在特拉維夫大學獲得電機工程的學士和碩士學位。
作者簡介
Dr. Koby Mike is a Ph.D. graduate from the Technion's Department of Education in Science and Technology under the supervision of Professor Orit Hazzan. He continued his a post-doc research on data science education at the Bar-Ilan University, and retains B.Sc. and an M.Sc. in Electrical Engineering from Tel Aviv University. After two decades of professional career is the Israeli hi-tech industry, he returned to academia for his doctoral studies on data science education. As part of is research, Koby developed and taught several data science programs for high school students, high school computer science teachers, and graduate students and researchers in social sciences and digital humanities.
作者簡介(中文翻譯)
奧瑞特·哈贊教授自2000年10月以來一直是以色列理工學院科學與技術教育系的教職員。她的研究專注於計算機科學、軟體工程和數據科學教育。在這個框架下,她研究個人、團隊和組織層面的認知和社會過程,涵蓋各種組織。她在專業的同行評審期刊和會議論文集中發表了約130篇論文,並出版了七本書籍。在2007年至2010年間,她擔任以色列教育部指派的高中計算機科學課程委員會主席。2011年至2015年,哈贊擔任學院院長。從2017年到2019年,哈贊擔任以色列理工學院本科生學習院院長。
科比·邁克博士是以色列理工學院科學與技術教育系的博士畢業生,指導教授為奧瑞特·哈贊。他在巴伊蘭大學繼續進行數據科學教育的博士後研究,並擁有特拉維夫大學的電機工程學士和碩士學位。在以色列高科技產業工作了二十年後,他回到學術界進行數據科學教育的博士研究。作為其研究的一部分,科比開發並教授了多個針對高中學生、高中計算機科學教師以及社會科學和數位人文領域的研究生和研究者的數據科學課程。