此商品已下架,若仍需天瓏代為查詢或代購書籍,請與門市客服人員聯繫,或 E-mail 至 service@tenlong.com.tw 將有專人為您服務。

2D and 3D Image Analysis by Moments (Hardcover)
暫譯: 基於矩的2D與3D影像分析(精裝版)

Jan Flusser, Tomas Suk, Barbara Zitova

  • 出版商: Wiley
  • 出版日期: 2016-12-19
  • 售價: $1,890
  • 貴賓價: 9.8$1,852
  • 語言: 英文
  • 頁數: 560
  • 裝訂: Hardcover
  • ISBN: 1119039355
  • ISBN-13: 9781119039358
  • 下單後立即進貨 (約5~7天)

買這商品的人也買了...

商品描述

<內容簡介>

Presents recent significant and rapid development in the field of 2D and 3D image analysis

2D and 3D Image Analysis by Moments, is a unique compendium of moment-based image analysis which includes traditional methods and also reflects the latest development of the field.

The book presents a survey of 2D and 3D moment invariants with respect to similarity and affine spatial transformations and to image blurring and smoothing by various filters. The book comprehensively describes the mathematical background and theorems about the invariants but a large part is also devoted to practical usage of moments. Applications from various fields of computer vision, remote sensing, medical imaging, image retrieval, watermarking, and forensic analysis are demonstrated. Attention is also paid to efficient algorithms of moment computation.

Key features:

*Presents a systematic overview of moment-based features used in 2D and 3D image analysis.
*Demonstrates invariant properties of moments with respect to various spatial and intensity transformations.
*Reviews and compares several orthogonal polynomials and respective moments.
*Describes efficient numerical algorithms for moment computation.
*It is a "classroom ready" textbook with a self-contained introduction to classifier design.
*The accompanying website contains around 300 lecture slides, Matlab codes, complete lists of the invariants, test images, and other supplementary material.

2D and 3D Image Analysis by Moments, is ideal for mathematicians, computer scientists, engineers, software developers, and Ph.D students involved in image analysis and recognition. Due to the addition of two introductory chapters on classifier design, the book may also serve as a self-contained textbook for graduate university courses on object recognition.


<
章節目錄>

Preface xvii

Acknowledgements xxi

1 Motivation 1

1.1 Image analysis by computers 1

1.2 Humans, computers, and object recognition 4

1.3 Outline of the book 5

References 7

2 Introduction to Object Recognition 8

2.1 Feature space 8

2.1.1 Metric spaces and norms 9

2.1.2 Equivalence and partition 11

2.1.3 Invariants 12

2.1.4 Covariants 14

2.1.5 Invariant-less approaches 15

2.2 Categories of the invariants 15

2.2.1 Simple shape features 16

2.2.2 Complete visual features 18

2.2.3 Transformation coefficient features 20

2.2.4 Textural features 21

2.2.5 Wavelet-based features 23

2.2.6 Differential invariants 24

2.2.7 Point set invariants 25

2.2.8 Moment invariants 26

2.3 Classifiers 27

2.3.1 Nearest-neighbor classifiers 28

2.3.2 Support vector machines 31

2.3.3 Neural network classifiers 32

2.3.4 Bayesian classifier 34

2.3.5 Decision trees 35

2.3.6 Unsupervised classification 36

2.4 Performance of the classifiers 37

2.4.1 Measuring the classifier performance 37

2.4.2 Fusing classifiers 38

2.4.3 Reduction of the feature space dimensionality 38

2.5 Conclusion 40

References 41

3 2D Moment Invariants to Translation, Rotation, and Scaling 45

3.1 Introduction 45

3.1.1 Mathematical preliminaries 45

3.1.2 Moments 47

3.1.3 Geometric moments in 2D 48

3.1.4 Other moments 49

3.2 TRS invariants from geometric moments 50

3.2.1 Invariants to translation 50

3.2.2 Invariants to uniform scaling 51

3.2.3 Invariants to non-uniform scaling 52

3.2.4 Traditional invariants to rotation 54

3.3 Rotation invariants using circular moments 56

3.4 Rotation invariants from complex moments 57

3.4.1 Complex moments 57

3.4.2 Construction of rotation invariants 58

3.4.3 Construction of the basis 59

3.4.4 Basis of the invariants of the second and third orders 62

3.4.5 Relationship to the Hu invariants 63

3.5 Pseudoinvariants 67

3.6 Combined invariants to TRS and contrast stretching 68

3.7 Rotation invariants for recognition of symmetric objects 69

3.7.1 Logo recognition 75

3.7.2 Recognition of shapes with different fold numbers 75

3.7.3 Experiment with a baby toy 77

3.8 Rotation invariants via image normalization 81

3.9 Moment invariants of vector fields 86

3.10 Conclusion 92

References 92

4 3D Moment Invariants to Translation, Rotation, and Scaling 95

4.1 Introduction 95

4.2 Mathematical description of the 3D rotation 98

4.3 Translation and scaling invariance of 3D geometric moments 100

4.4 3D rotation invariants by means of tensors 101

4.4.1 Tensors 101

4.4.2 Rotation invariants 102

4.4.3 Graph representation of the invariants 103

4.4.4 The number of the independent invariants 104

4.4.5 Possible dependencies among the invariants 105

4.4.6 Automatic generation of the invariants by the tensor method 106

4.5 Rotation invariants from 3D complex moments 108

4.5.1 Translation and scaling invariance of 3D complex moments 112

4.5.2 Invariants to rotation by means of the group representation theory 112

4.5.3 Construction of the rotation invariants 115

4.5.4 Automated generation of the invariants 117

4.5.5 Elimination of the reducible invariants 118

4.5.6 The irreducible invariants 118

4.6 3D translation, rotation, and scale invariants via normalization 119

4.6.1 Rotation normalization by geometric moments 120

4.6.2 Rotation normalization by complex moments 123

4.7 Invariants of symmetric objects 124

4.7.1 Rotation and reflection symmetry in 3D 124

4.7.2 The influence of symmetry on 3D complex moments 128

4.7.3 Dependencies among the invariants due to symmetry 130

4.8 Invariants of 3D vector fields 131

4.9 Numerical experiments 131

4.9.1 Implementation details 131

4.9.2 Experiment with archeological findings 133

4.9.3 Recognition of generic classes 135

4.9.4 Submarine recognition – robustness to noise test 137

4.9.5 Teddy bears – the experiment on real data 141

4.9.6 Artificial symmetric bodies 142

4.9.7 Symmetric objects from the Princeton Shape Benchmark 143

4.10 Conclusion 147

Appendix 4.A 148

Appendix 4.B 156

Appendix 4.C 158

References 160

5 Affine Moment Invariants in 2D and 3D 163

5.1 Introduction 163

5.1.1 2D projective imaging of 3D world 164

5.1.2 Projective moment invariants 165

5.1.3 Affine transformation 167

5.1.4 2D Affine moment invariants – the history 168

5.2 AMIs derived from the Fundamental theorem 170

5.3 AMIs generated by graphs 171

5.3.1 The basic concept 172

5.3.2 Representing the AMIs by graphs 173

5.3.3 Automatic generation of the invariants by the graph method 173

5.3.4 Independence of the AMIs 174

5.3.5 The AMIs and tensors 180

5.4 AMIs via image normalization 181

5.4.1 Decomposition of the affine transformation 182

5.4.2 Relation between the normalized moments and the AMIs 185

5.4.3 Violation of stability 186

5.4.4 Affine invariants via half normalization 187

5.4.5 Affine invariants from complex moments 187

5.5 The method of the transvectants 190

5.6 Derivation of the AMIs from the Cayley-Aronhold equation 195

5.6.1 Manual solution 195

5.6.2 Automatic solution 198

5.7 Numerical experiments 201

5.7.1 Invariance and robustness of the AMIs 201

5.7.2 Digit recognition 201

5.7.3 Recognition of symmetric patterns 204

5.7.4 The children’s mosaic 208

5.7.5 Scrabble tiles recognition 210

5.8 Affine invariants of color images 214

5.8.1 Recognition of color pictures 217

5.9 Affine invariants of 2D vector fields 218

5.10 3D affine moment invariants 221

5.10.1 The method of geometric primitives 222

5.10.2 Normalized moments in 3D 224

5.10.3 Cayley-Aronhold equation in 3D 225

5.11 Beyond invariants 225

5.11.1 Invariant distance measure between images 225

5.11.2 Moment matching 227

5.11.3 Object recognition as a minimization problem 229

5.11.4 Numerical experiments 229

5.12 Conclusion 231

Appendix 5.A 232

Appendix 5.B 233

References 234

6 Invariants to Image Blurring 237

6.1 Introduction 237

6.1.1 Image blurring – the sources and modeling 237

6.1.2 The need for blur invariants 239

6.1.3 State of the art of blur invariants 239

6.1.4 The chapter outline 246

6.2 An intuitive approach to blur invariants 247

6.3 Projection operators and blur invariants in Fourier domain 249

6.4 Blur invariants from image moments 252

6.5 Invariants to centrosymmetric blur 254

6.6 Invariants to circular blur 256

6.7 Invariants to N-FRS blur 259

6.8 Invariants to dihedral blur 265

6.9 Invariants to directional blur 269

6.10 Invariants to Gaussian blur 272

6.10.1 1D Gaussian blur invariants 274

6.10.2 Multidimensional Gaussian blur invariants 278

6.10.3 2D Gaussian blur invariants from complex moments 279

6.11 Invariants to other blurs 280

6.12 Combined invariants to blur and spatial transformations 282

6.12.1 Invariants to blur and rotation 282

6.12.2 Invariants to blur and affine transformation 283

6.13 Computational issues 284

6.14 Experiments with blur invariants 285

6.14.1 A simple test of blur invariance property 285

6.14.2 Template matching in satellite images 286

6.14.3 Template matching in outdoor images 291

6.14.4 Template matching in astronomical images 291

6.14.5 Face recognition on blurred and noisy photographs 292

6.14.6 Traffic sign recognition 294

6.15 Conclusion 302

Appendix 6.A 303

Appendix 6.B 304

Appendix 6.C 306

Appendix 6.D 308

Appendix 6.E 310

Appendix 6.F 310

Appendix 6.G 311

References 315

7 2D and 3D Orthogonal Moments 320

7.1 Introduction 320

7.2 2D moments orthogonal on a square 322

7.2.1 Hypergeometric functions 323

7.2.2 Legendre moments 324

7.2.3 Chebyshev moments 327

7.2.4 Gaussian-Hermite moments 331

7.2.5 Other moments orthogonal on a square 334

7.2.6 Orthogonal moments of a discrete variable 338

7.2.7 Rotation invariants from moments orthogonal on a square 348

7.3 2D moments orthogonal on a disk 351

7.3.1 Zernike and Pseudo-Zernike moments 352

7.3.2 Fourier-Mellin moments 358

7.3.3 Other moments orthogonal on a disk 361

7.4 Object recognition by Zernike moments 363

7.5 Image reconstruction from moments 365

7.5.1 Reconstruction by direct calculation 367

7.5.2 Reconstruction in the Fourier domain 369

7.5.3 Reconstruction from orthogonal moments 370

7.5.4 Reconstruction from noisy data 373

7.5.5 Numerical experiments with a reconstruction from OG moments 373

7.6 3D orthogonal moments 377

7.6.1 3D moments orthogonal on a cube 380

7.6.2 3D moments orthogonal on a sphere 381

7.6.3 3D moments orthogonal on a cylinder 383

7.6.4 Object recognition of 3D objects by orthogonal moments 383

7.6.5 Object reconstruction from 3D moments 387

7.7 Conclusion 389

References 389

8 Algorithms for Moment Computation 398

8.1 Introduction 398

8.2 Digital image and its moments 399

8.2.1 Digital image 399

8.2.2 Discrete moments 400

8.3 Moments of binary images 402

8.3.1 Moments of a rectangle 402

8.3.2 Moments of a general-shaped binary object 403

8.4 Boundary-based methods for binary images 404

8.4.1 The methods based on Green’s theorem 404

8.4.2 The methods based on boundary approximations 406

8.4.3 Boundary-based methods for 3D objects 407

8.5 Decomposition methods for binary images 410

8.5.1 The "delta" method 412

8.5.2 Quadtree decomposition 413

8.5.3 Morphological decomposition 415

8.5.4 Graph-based decomposition 416

8.5.5 Computing binary OG moments by means of decomposition methods 420

8.5.6 Experimental comparison of decomposition methods 422

8.5.7 3D decomposition methods 423

8.6 Geometric moments of graylevel images 428

8.6.1 Intensity slicing 429

8.6.2 Bit slicing 430

8.6.3 Approximation methods 433

8.7 Orthogonal moments of graylevel images 435

8.7.1 Recurrent relations for moments orthogonal on a square 435

8.7.2 Recurrent relations for moments orthogonal on a disk 436

8.7.3 Other methods 438

8.8 Conclusion 440

Appendix 8.A 441

References 443

9 Applications 448

9.1 Introduction 448

9.2 Image understanding 448

9.2.1 Recognition of animals 449

9.2.2 Face and other human parts recognition 450

9.2.3 Character and logo recognition 453

9.2.4 Recognition of vegetation and of microscopic natural structures 454

9.2.5 Traffic-related recognition 455

9.2.6 Industrial recognition 456

9.2.7 Miscellaneous applications 457

9.3 Image registration 459

9.3.1 Landmark-based registration 460

9.3.2 Landmark-free registration methods 467

9.4 Robot and autonomous vehicle navigation and visual servoing 470

9.5 Focus and image quality measure 474

9.6 Image retrieval 476

9.7 Watermarking 481

9.8 Medical imaging 486

9.9 Forensic applications 489

9.10 Miscellaneous applications 496

9.10.1 Noise resistant optical flow estimation 496

9.10.2 Edge detection 497

9.10.3 Description of solar flares 498

9.10.4 Gas-liquid flow categorization 499

9.10.5 3D object visualization 500

9.10.6 Object tracking 500

9.11 Conclusion 501

References 501

10 Conclusion 518

10.1 Summary of the book 518

10.2 Pros and cons of moment invariants 519

10.3 Outlook to the future 520

Index 521

商品描述(中文翻譯)

內容簡介

本書介紹了2D和3D影像分析領域最近的重要和快速發展。《基於矩的2D和3D影像分析》是一本獨特的基於矩的影像分析彙編,涵蓋了傳統方法並反映了該領域的最新發展。

本書對於2D和3D矩不變量進行了調查,涉及相似性和仿射空間變換,以及通過各種濾波器進行的影像模糊和平滑。書中全面描述了不變量的數學背景和定理,但也有很大一部分專注於矩的實際應用。展示了來自計算機視覺、遙感、醫學影像、影像檢索、水印和法醫分析等各個領域的應用。同時也關注了矩計算的高效算法。

主要特點:

* 提供基於矩的特徵在2D和3D影像分析中的系統概述。
* 演示矩對於各種空間和強度變換的不變性質。
* 回顧並比較幾種正交多項式及其相應的矩。
* 描述矩計算的高效數值算法。
* 本書是一本“課堂準備”教材,包含對分類器設計的自成一體的介紹。
* 附帶網站包含約300張講義幻燈片、Matlab代碼、不變量的完整列表、測試影像及其他補充材料。

《基於矩的2D和3D影像分析》非常適合從事影像分析和識別的數學家、計算機科學家、工程師、軟體開發人員和博士生。由於增加了兩章關於分類器設計的入門章節,本書也可以作為研究生大學課程中物體識別的自成一體的教材。

章節目錄

前言 xvii

致謝 xxi

1 動機 1

1.1 電腦影像分析 1

1.2 人類、電腦與物體識別 4

1.3 本書大綱 5

參考文獻 7

2 物體識別簡介 8

2.1 特徵空間 8

2.1.1 度量空間與範數 9

2.1.2 等價與劃分 11

2.1.3 不變量 12

2.1.4 協變量 14

2.1.5 無不變量的方法 15

2.2 不變量的類別 15

2.2.1 簡單形狀特徵 16

2.2.2 完整視覺特徵 18

2.2.3 變換係數特徵 20

2.2.4 紋理特徵 21

2.2.5 基於小波的特徵 23

2.2.6 微分不變量 24

2.2.7 點集不變量 25

2.2.8 矩不變量 26

2.3 分類器 27

2.3.1 最近鄰分類器 28

2.3.2 支持向量機 31

2.3.3 神經網絡分類器 32

2.3.4 貝葉斯分類器 34

2.3.5 決策樹 35

2.3.6 無監督分類 36

2.4 分類器的性能 37

2.4.1 測量分類器性能 37

2.4.2 融合分類器 38

2.4.3 降低特徵空間維度 38

2.5 結論 40

參考文獻 41

3 2D矩不變量對於平移、旋轉和縮放 45

3.1 簡介 45

3.1.1 數學預備知識 45

3.1.2 矩 47

3.1.3 2D幾何矩 48

3.1.4 其他矩 49

3.2 來自幾何矩的TRS不變量 50

3.2.1 對平移的不變量 50

3.2.2 對均勻縮放的不變量 51

3.2.3 對非均勻縮放的不變量 52

3.2.4 對旋轉的傳統不變量 54

3.3 使用圓形矩的旋轉不變量 56

3.4 來自複數矩的旋轉不變量 57

3.4.1 複數矩 57

3.4.2 旋轉不變量的構造 58

3.4.3 基底的構造 59

3.4.4 二階和三階不變量的基底 62

3.4.5 與Hu不變量的關係 63

3.5 假不變量 67

3.6 對TRS和對比度拉伸的組合不變量 68

3.7 用於識別對稱物體的旋轉不變量 69

3.7.1 標誌識別 75

3.7.2 不同折疊數形狀的識別 75

3.7.3 嬰兒玩具的實驗 77

3.8 通過影像正規化的旋轉不變量 81

3.9 向量場的矩不變量 86

3.10 結論 92

參考文獻 92

4 3D矩不變量對於平移、旋轉和縮放 95

4.1 簡介 95

4.2 3D旋轉的數學描述 98

4.3 3D幾何矩的平移和縮放不變性 100

4.4 通過張量的3D旋轉不變量 101

4.4.1 張量 101

4.4.2 旋轉不變量 102

4.4.3 不變量的圖形表示 103

4.4.4 獨立不變量的數量 104

4.4.5 不變量之間的可能依賴性 105

4.4.6 通過張量方法自動生成不變量 106

4.5 來自3D複數矩的旋轉不變量 108

4.5.1 3D複數矩的平移和縮放不變性 112

4.5.2 通過群表示理論的旋轉不變量 112

4.5.3 旋轉不變量的構造 115

4.5.4 不變量的自動生成 117

4.5.5 消除可約不變量 118

4.5.6 不可約不變量 118

4.6 通過正規化的3D平移、旋轉和縮放不變量 119

4.6.1 通過幾何矩的旋轉正規化 120

4.6.2 通過複數矩的旋轉正規化 123

4.7 對稱物體的不變量 124

4.7.1 3D中的旋轉和反射對稱 124

4.7.2 對稱對3D複數矩的影響 128

4.7.3 由於對稱性導致的不變量之間的依賴性 130

4.8 3D向量場的不變量 131

4.9 數值實驗 131

4.9.1 實現細節 131

4.9.2 與考古發現的實驗 133

4.9.3 通用類別的識別 135

4.9.4 潛艇識別 - 對噪聲的穩健性測試 137

4.9.5 泰迪熊 - 實際數據的實驗 141

4.9.6 人工對稱體 142

4.9.7 來自普林斯頓形狀基準的對稱物體 143

4.10 結論 147

附錄 4.A 148

附錄 4.B 156

附錄 4.C 158

參考文獻 160

5 2D和3D的仿射矩不變量 163

5.1 簡介 163

5.1.1 3D世界的2D投影成像 164

5.1.2 投影矩不變量 165

5.1.3 仿射變換 167

5.1.4 2D仿射矩不變量 - 歷史 168

5.2 來自基本定理的AMIs 170

5.3 通過圖形生成的AMIs 171

5.3.1 基本概念 172

5.3.2 通過圖形表示AMIs 173

5.3.3 通過圖形方法自動生成不變量 173

5.3.4 AMIs的獨立性 174

5.3.5 AMIs與張量 180

5.4 通過影像正規化的AMIs 181

5.4.1 仿射變換的分解 182

5.4.2 正規化矩與AMIs之間的關係 185

5.4.3 穩定性違反 186

5.4.4 通過半正規化的仿射不變量 187

5.4.5 來自複數矩的仿射不變量 187

5.5 交互量的法則 190

5.6 從Cayley-Aronhold方程推導AMIs 195

5.6.1 手動解 195

5.6.2 自動解 198

5.7 數值實驗 201

5.7.1 AMIs的穩定性和穩健性 201

5.7.2 數字識別 201

5.7.3 對稱模式的識別 204

5.7.4 兒童馬賽克 208

5.7.5 拼字遊戲瓷磚識別 210

5.8 彩色影像的仿射不變量 214

5.8.1 彩色圖片的識別 217

5.9 2D向量場的仿射不變量 218

5.10 3D仿射矩不變量 221

5.10.1 幾何原始物體的方法 222

5.10.2 3D中的正規化矩 224

5.10.3 3D中的Cayley-Aronhold方程 225

5.11 超越不變量 225

5.11.1 影像之間的不變距離度量 225

5.11.2 矩匹配 227

5.11.3 物體識別作為最小化問題 229

5.11.4 數值實驗 229

5.12 結論 231

附錄 5.A 232

附錄 5.B 233

參考文獻 234

6 對影像模糊的不變量 237

6.1 簡介 237

6.1.1 影像模糊 - 來源與建模 237

6.1.2 對模糊不變量的需求 239

6.1.3 模糊不變量的最新進展 239

6.1.4 本章大綱 246

6.2 對模糊不變量的直觀方法 247

6.3 投影算子和傅立葉域中的模糊不變量 249

6.4 來自影像矩的模糊不變量 252

6.5 對中心對稱模糊的不變量 254

6.6 對圓形模糊的不變量 256

6.7 對N-FRS模糊的不變量 259

6.8 對二面體模糊的不變量 265

6.9 對方向模糊的不變量 269

6.10 對高斯模糊的不變量 272

6.10.1 1D高斯模糊不變量 274

6.10.2 多維高斯模糊不變量 278

6.10.3 來自複數矩的2D高斯模糊不變量 279

6.11 對其他模糊的不變量 280

6.12 對模糊和空間變換的組合不變量 282

6.12.1 對模糊和旋轉的不變量 282

6.12.2 對模糊和仿射變換的不變量 283

6.13 計算問題 284

6.14 實驗