Pattern Recognition: Methods and Applications
暫譯: 模式識別:方法與應用
Khalid Hosny, Jorge de la Calleja
- 出版商: CreateSpace Independ
- 出版日期: 2013-08-23
- 售價: $4,030
- 貴賓價: 9.5 折 $3,829
- 語言: 英文
- 頁數: 300
- 裝訂: Paperback
- ISBN: 1477554823
- ISBN-13: 9781477554821
海外代購書籍(需單獨結帳)
相關主題
商品描述
Pattern recognition - Methods and Applications includes contributions from university educators and active research experts. This book is intended to serve as a basic reference on pattern recognition, especially on the topics related to image and graphics processing, shape analysis, text processing, and bioinformatics analysis.
Chapter 1 proposes a review of traditional outlier detection methods and their recent enhancements. Some particular data representations are presented. A case-study based on a synthetic data is proposed in order to demonstrate the potential of a fuzzy logic approach which combines several techniques.
Chapter 2 studies the conditions for which the solution given by the Maximum Entropy Principle is equivalent to that given by Support Vector Machines. It describes a unifying framework that computes the probability density function and the optimal separating surface from examples.
Chapter 3 presents techniques for building multi-sensor fusion classifiers. A pairwise diversity-based ranking strategy is introduced to select a subset of ensemble components, which when combined, will be more diverse than any other component subset of the same size.
Chapter 4 proposes a neural-network-based differential evolution approach for face recognition (FR). The approach combines neural network classifiers and differential evolution updates, applies both 2D texture and 3D surface feature vectors, and effectively enhance the FR performance.
Chapter 5 proposes an efficient margin-based linear embedding method that exploits the nearest hit and the nearest miss samples only.
Chapter 6 proposes an efficient algorithm to construct the skeleton of a binary image as a geometric graph whose edges are Bezier curves 1 and 2 degrees.
Chapter 7 presents a novel structured light means with no coding procedure involved. By projecting a binary rhombic pattern, and computing the 3D surface normal at grid-points, the 3D reconstruction procedure can be realized via the proposed surface integration methods.
Chapter 8 focuses on exploring the potential of virtual worlds in order to train appearance-based models for pedestrian detections in ADAS. A de facto pedestrian detector is used for this task: a linear SVM with HOG features.
Chapter 9 proposes a technique for partially automating the creation of a large-scale dictionary or corpus. More specifically, this involves adding unknown words to an existing language resource; in this case, a thesaurus.
Chapter 10 proposes a probabilistic model that explicitly considers the document relations represented by links. A given document is modeled as a mixture of a set of topic distributions, each of which is borrowed (cited) from a document that is related to the given document.
Chapter 11 proposes a improve of the segmentation method by topic ClustSeg. The proposed improvement is a strategy to automatically calculate the threshold for deciding the cohesiveness between textual units. This proposal can be used by other methods of text segmentation by topic.
Chapter 12 proposes a comparative analysis of Wavelets, used as input attributes of support vector machines, which will be responsible for classification of pathological voices.
Chapter 13 introduces a complete methodology for automatic human chromosome classification. The methodology isolates the chromosomes from microscopic images, extracts their characteristic band profiles, and then classifies them.
Chapter 14 presents a compositional spectra approach for classifying bacterial genomes. The problem of bacteria classification arose long before the start of the Genomic Era.
Chapter 15 describes how spectroscopic and chromatographic methods coupled to pattern recognition multivariate algorithms can be an excellent tool for the determination of fuel compliance to technical specifications and origin determination purposes.
商品描述(中文翻譯)
《模式識別 - 方法與應用》包含來自大學教育者和活躍研究專家的貢獻。本書旨在作為模式識別的基本參考,特別是與影像和圖形處理、形狀分析、文本處理及生物資訊分析相關的主題。
第一章回顧了傳統的異常值檢測方法及其最近的增強。介紹了一些特定的數據表示。提出了一個基於合成數據的案例研究,以展示結合多種技術的模糊邏輯方法的潛力。
第二章研究了最大熵原則所給出的解與支持向量機所給出的解相等的條件。描述了一個統一框架,該框架從示例中計算概率密度函數和最佳分隔面。
第三章介紹了構建多傳感器融合分類器的技術。引入了一種基於成對多樣性的排名策略,以選擇一組集成組件的子集,這些組件的組合將比任何其他相同大小的組件子集更具多樣性。
第四章提出了一種基於神經網絡的差分進化方法,用於人臉識別(FR)。該方法結合了神經網絡分類器和差分進化更新,應用2D紋理和3D表面特徵向量,有效提升FR性能。
第五章提出了一種高效的基於邊界的線性嵌入方法,僅利用最近的命中樣本和最近的錯過樣本。
第六章提出了一種高效的算法,用於構建二進制圖像的骨架,作為一個幾何圖形,其邊緣為1度和2度的貝茲曲線。
第七章介紹了一種新穎的結構光方法,無需編碼程序。通過投影二進制菱形圖案,並在網格點計算3D表面法線,可以通過所提出的表面積分方法實現3D重建過程。
第八章專注於探索虛擬世界的潛力,以訓練基於外觀的模型,用於ADAS中的行人檢測。這項任務使用了一個事實上的行人檢測器:帶有HOG特徵的線性SVM。
第九章提出了一種部分自動化創建大規模詞典或語料庫的技術。更具體地說,這涉及將未知單詞添加到現有的語言資源中;在這種情況下,是一個同義詞詞典。
第十章提出了一個概率模型,明確考慮由鏈接表示的文檔關係。給定文檔被建模為一組主題分佈的混合,每個主題分佈都來自與給定文檔相關的文檔。
第十一章提出了一種改進的主題分割方法ClustSeg。所提出的改進是一種自動計算文本單元之間凝聚力的閾值的策略。這一提案可以被其他主題文本分割方法使用。
第十二章提出了一種比較分析小波的方法,作為支持向量機的輸入屬性,負責病理聲音的分類。
第十三章介紹了一種自動人類染色體分類的完整方法論。該方法論從顯微圖像中分離染色體,提取其特徵帶型,然後進行分類。
第十四章提出了一種組合光譜方法,用於分類細菌基因組。細菌分類的問題早在基因組時代開始之前就已經出現。
第十五章描述了如何將光譜學和色譜學方法與模式識別多變量算法結合,成為確定燃料是否符合技術規範和來源確定目的的優秀工具。