Machine Learning with R, 2/e (Paperback)
暫譯: 使用 R 的機器學習(第二版)
Brett Lantz
- 出版商: Packt Publishing
- 出版日期: 2015-07-31
- 定價: $1,650
- 售價: 5.0 折 $825
- 語言: 英文
- 頁數: 452
- 裝訂: Paperback
- ISBN: 1784393908
- ISBN-13: 9781784393908
-
相關分類:
Machine Learning
-
相關翻譯:
機器學習與R語言 (原書第2版) (簡中版)
-
其他版本:
Machine Learning with R, 3/e
買這商品的人也買了...
-
$1,950$1,853 -
$400$380 -
$1,200$1,140 -
$680$537 -
$420$277 -
$160$152 -
$600$570 -
$380$361 -
$1,930$1,834 -
$1,250$1,188 -
$360$284 -
$2,000$1,900 -
$900Data Analysis with R Paperback – December 22, 2015
-
$1,690$1,606 -
$540$459 -
$1,660$1,577 -
$840$756 -
$1,830$1,739 -
$2,280$2,166 -
$3,600$3,420 -
$1,400$1,330 -
$5,350$5,083 -
$1,100$1,045 -
$5,250$4,988 -
$1,230$1,169
相關主題
商品描述
Key Features
- Harness the power of R for statistical computing and data science
- Explore, forecast, and classify data with R
- Use R to apply common machine learning algorithms to real-world scenarios
Book Description
Machine learning, at its core, is concerned with transforming data into actionable knowledge. This makes machine learning well suited to the present-day era of big data. Given the growing prominence of R—a cross-platform, zero-cost statistical programming environment—there has never been a better time to start applying machine learning to your data. Whether you are new to data analytics or a veteran, machine learning with R offers a powerful set of methods to quickly and easily gain insights from your data.
Want to turn your data into actionable knowledge, predict outcomes that make real impact, and have constantly developing insights? R gives you access to the cutting-edge power you need to master exceptional machine learning techniques.
Updated and upgraded to the latest libraries and most modern thinking, the second edition of Machine Learning with R provides you with a rigorous introduction to this essential skill of professional data science. Without shying away from technical theory, it is written to provide focused and practical knowledge to get you building algorithms and crunching your data, with minimal previous experience.
With this book you’ll discover all the analytical tools you need to gain insights from complex data and learn how to to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you’ll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering. Transform the way you think about data; discover machine learning with R.
What you will learn
- Harness the power of R to build common machine learning algorithms with real-world data science applications
- Get to grips with R techniques to clean and prepare your data for analysis, and visualize your results
- Discover the different types of machine learning models and learn which is best to meet your data needs and solve your analysis problems
- Classify your data with Bayesian and nearest neighbour methods
- Predict values by using R to build decision trees, rules, and support vector machines
- Forecast numeric values with linear regression, and model your data with neural networks
- Evaluate and improve the performance of machine learning models
- Learn specialized machine learning techniques for text mining, social network data, big data, and more
About the Author
Brett Lantz has used innovative data methods to understand human behavior for more than 10 years. A sociologist by training, he was first enchanted by machine learning while studying a large database of teenagers' social networking website profiles. Since then, he has worked on the interdisciplinary studies of cellular telephone calls, medical billing data, and philanthropic activity, among others.
Table of Contents
- Introducing Machine Learning
- Managing and Understanding Data
- Lazy Learning – Classification Using Nearest Neighbors
- Probabilistic Learning – Classification Using Naive Bayes
- Divide and Conquer – Classification Using Decision Trees and Rules
- Forecasting Numeric Data – Regression Methods
- Black Box Methods – Neural Networks and Support Vector Machines
- Finding Patterns – Market Basket Analysis Using Association Rules
- Finding Groups of Data – Clustering with K-means
- Evaluating Model Performance
- Improving Model Performance
- Specialized Machine Learning Topics
商品描述(中文翻譯)
**主要特點**
- 利用 R 的力量進行統計計算和數據科學
- 使用 R 探索、預測和分類數據
- 使用 R 將常見的機器學習算法應用於現實世界的場景
**書籍描述**
機器學習的核心在於將數據轉化為可行的知識。這使得機器學習非常適合當今大數據的時代。隨著 R 的日益重要——一個跨平台、零成本的統計編程環境——現在是將機器學習應用於您的數據的最佳時機。無論您是數據分析的新手還是老手,使用 R 進行機器學習都提供了一套強大的方法,讓您能夠快速輕鬆地從數據中獲得洞察。
想要將您的數據轉化為可行的知識,預測能夠產生實際影響的結果,並持續發展洞察力嗎?R 為您提供了掌握卓越機器學習技術所需的尖端力量。
第二版的《使用 R 進行機器學習》已更新並升級到最新的庫和最現代的思維,為您提供了這一專業數據科學必備技能的嚴謹介紹。書中不迴避技術理論,旨在提供專注且實用的知識,讓您能夠在最少的先前經驗下開始構建算法和處理數據。
通過本書,您將發現所有分析工具,以便從複雜數據中獲得洞察,並學會如何選擇適合您特定需求的正確算法。通過全面參與數據處理者面臨的現實問題,您將學會應用機器學習方法來處理常見任務,包括分類、預測、預測、市場分析和聚類。改變您對數據的思考方式;與 R 一起探索機器學習。
**您將學到的內容**
- 利用 R 的力量構建具有現實世界數據科學應用的常見機器學習算法
- 掌握 R 技術以清理和準備數據進行分析,並可視化結果
- 探索不同類型的機器學習模型,並了解哪一種最適合滿足您的數據需求和解決分析問題
- 使用貝葉斯和最近鄰方法對數據進行分類
- 通過使用 R 構建決策樹、規則和支持向量機來預測值
- 使用線性回歸預測數值,並用神經網絡建模數據
- 評估和改進機器學習模型的性能
- 學習文本挖掘、社交網絡數據、大數據等專門的機器學習技術
**關於作者**
**Brett Lantz** 在理解人類行為方面使用創新的數據方法已有超過 10 年的經驗。作為一名受過訓練的社會學家,他在研究一個大型青少年社交網絡網站資料庫時首次被機器學習所吸引。此後,他在手機通話、醫療計費數據和慈善活動等跨學科研究中工作。
**目錄**
1. 介紹機器學習
2. 管理和理解數據
3. 懶惰學習——使用最近鄰進行分類
4. 機率學習——使用朴素貝葉斯進行分類
5. 分而治之——使用決策樹和規則進行分類
6. 預測數值數據——回歸方法
7. 黑箱方法——神經網絡和支持向量機
8. 尋找模式——使用關聯規則的市場籃分析
9. 尋找數據群組——使用 K-means 進行聚類
10. 評估模型性能
11. 改進模型性能
12. 專門的機器學習主題