Data Science Algorithms in a Week: Top 7 algorithms for scientific computing, data analysis, and machine learning, 2/e
暫譯: 一週掌握資料科學演算法:科學計算、資料分析與機器學習的七大演算法,第二版
David Natingga
- 出版商: Packt Publishing
- 出版日期: 2018-10-31
- 售價: $1,840
- 貴賓價: 9.5 折 $1,748
- 語言: 英文
- 頁數: 214
- 裝訂: Paperback
- ISBN: 1789806070
- ISBN-13: 9781789806076
-
相關分類:
Data Science、Machine Learning、Algorithms-data-structures
海外代購書籍(需單獨結帳)
商品描述
Build a strong foundation of machine learning algorithms in 7 days
Key Features
- Use Python and its wide array of machine learning libraries to build predictive models
- Learn the basics of the 7 most widely used machine learning algorithms within a week
- Know when and where to apply data science algorithms using this guide
Book Description
Machine learning applications are highly automated and self-modifying, and continue to improve over time with minimal human intervention, as they learn from the trained data. To address the complex nature of various real-world data problems, specialized machine learning algorithms have been developed. Through algorithmic and statistical analysis, these models can be leveraged to gain new knowledge from existing data as well.
Data Science Algorithms in a Week addresses all problems related to accurate and efficient data classification and prediction. Over the course of seven days, you will be introduced to seven algorithms, along with exercises that will help you understand different aspects of machine learning. You will see how to pre-cluster your data to optimize and classify it for large datasets. This book also guides you in predicting data based on existing trends in your dataset. This book covers algorithms such as k-nearest neighbors, Naive Bayes, decision trees, random forest, k-means, regression, and time-series analysis.
By the end of this book, you will understand how to choose machine learning algorithms for clustering, classification, and regression and know which is best suited for your problem
What you will learn
- Understand how to identify a data science problem correctly
- Implement well-known machine learning algorithms efficiently using Python
- Classify your datasets using Naive Bayes, decision trees, and random forest with accuracy
- Devise an appropriate prediction solution using regression
- Work with time series data to identify relevant data events and trends
- Cluster your data using the k-means algorithm
Who this book is for
This book is for aspiring data science professionals who are familiar with Python and have a little background in statistics. You'll also find this book useful if you're currently working with data science algorithms in some capacity and want to expand your skill set
Table of Contents
- Classification using K Nearest Neighbors
- Naive Bayes
- Decision Trees
- Random Forests
- Clustering into K clusters
- Regression
- Time Series Analysis
- Python Reference
- Statistics
- Glossary of Algorithms and Methods in Data Science
商品描述(中文翻譯)
**在7天內建立強大的機器學習演算法基礎**
**主要特點**
- 使用Python及其廣泛的機器學習庫來建立預測模型
- 在一週內學習7種最常用的機器學習演算法的基本知識
- 知道何時何地應用數據科學演算法,使用本指南
**書籍描述**
機器學習應用高度自動化且自我修改,隨著時間的推移在最小的人為干預下持續改進,因為它們從訓練數據中學習。為了解決各種現實世界數據問題的複雜性,已開發出專門的機器學習演算法。通過演算法和統計分析,這些模型也可以用來從現有數據中獲取新知識。
《一週內的數據科學演算法》解決了與準確和高效的數據分類和預測相關的所有問題。在七天的時間裡,您將接觸到七種演算法,並進行練習,幫助您理解機器學習的不同方面。您將學會如何對數據進行預聚類,以優化和分類大型數據集。本書還指導您根據數據集中現有的趨勢來預測數據。本書涵蓋的演算法包括k最近鄰、朴素貝葉斯、決策樹、隨機森林、k均值、回歸和時間序列分析。
在本書結束時,您將了解如何選擇用於聚類、分類和回歸的機器學習演算法,並知道哪一種最適合您的問題。
**您將學到的內容**
- 理解如何正確識別數據科學問題
- 使用Python高效實現知名的機器學習演算法
- 使用朴素貝葉斯、決策樹和隨機森林準確分類您的數據集
- 使用回歸設計適當的預測解決方案
- 處理時間序列數據以識別相關的數據事件和趨勢
- 使用k均值演算法對數據進行聚類
**本書適合誰**
本書適合有志於成為數據科學專業人士的人士,要求熟悉Python並具備一定的統計背景。如果您目前在某種程度上正在使用數據科學演算法並希望擴展您的技能組,本書也將對您有所幫助。
**目錄**
1. 使用K最近鄰進行分類
2. 朴素貝葉斯
3. 決策樹
4. 隨機森林
5. 聚類到K個集群
6. 回歸
7. 時間序列分析
8. Python參考
9. 統計學
10. 數據科學中的演算法和方法詞彙表