Mastering Machine Learning with R: Advanced machine learning techniques for building smart applications with R 3.5, 3rd Edition
暫譯: 精通 R 的機器學習:使用 R 3.5 建立智慧應用的進階機器學習技術(第三版)

Cory Lesmeister

  • 出版商: Packt Publishing
  • 出版日期: 2019-01-31
  • 定價: $1,480
  • 售價: 8.0$1,184
  • 語言: 英文
  • 頁數: 354
  • 裝訂: Paperback
  • ISBN: 1789618002
  • ISBN-13: 9781789618006
  • 相關分類: R 語言Machine Learning
  • 立即出貨(限量) (庫存=1)

買這商品的人也買了...

相關主題

商品描述

Stay updated with expert techniques for solving data analytics and machine learning challenges and gain insights from complex projects and power up your applications

Key Features

  • Build independent machine learning (ML) systems leveraging the best features of R 3.5
  • Understand and apply different machine learning techniques using real-world examples
  • Use methods such as multi-class classification, regression, and clustering

Book Description

Given the growing popularity of the R-zerocost statistical programming environment, there has never been a better time to start applying ML to your data. This book will teach you advanced techniques in ML ,using? the latest code in R 3.5. You will delve into various complex features of supervised learning, unsupervised learning, and reinforcement learning algorithms to design efficient and powerful ML models.

This newly updated edition is packed with fresh examples covering a range of tasks from different domains. Mastering Machine Learning with R starts by showing you how to quickly manipulate data and prepare it for analysis. You will explore simple and complex models and understand how to compare them. You'll also learn to use the latest library support, such as TensorFlow and Keras-R, for performing advanced computations. Additionally, you'll explore complex topics, such as natural language processing (NLP), time series analysis, and clustering, which will further refine your skills in developing applications. Each chapter will help you implement advanced ML algorithms using real-world examples. You'll even be introduced to reinforcement learning, along with its various use cases and models. In the concluding chapters, you'll get a glimpse into how some of these blackbox models can be diagnosed and understood.

By the end of this book, you'll be equipped with the skills to deploy ML techniques in your own projects or at work.

What you will learn

  • Prepare data for machine learning methods with ease
  • Understand how to write production-ready code and package it for use
  • Produce simple and effective data visualizations for improved insights
  • Master advanced methods, such as Boosted Trees and deep neural networks
  • Use natural language processing to extract insights in relation to text
  • Implement tree-based classifiers, including Random Forest and Boosted Tree

Who this book is for

This book is for data science professionals, machine learning engineers, or anyone who is looking for the ideal guide to help them implement advanced machine learning algorithms. The book will help you take your skills to the next level and advance further in this field. Working knowledge of machine learning with R is mandatory.

Table of Contents

  1. Preparing and Understanding Data
  2. Linear Regression
  3. Logistic Regression
  4. Advanced Feature Selection in Linear Models
  5. K-Nearest Neighbors and Support Vector Machines
  6. Tree-Based Classification
  7. Neural Networks and Deep Learning
  8. Creating Ensembles and Multiclass Methods
  9. Cluster Analysis
  10. Principal Component Analysis
  11. Association Analysis
  12. Time Series and Causality
  13. Text Mining
  14. Appendix A- Creating a Package

商品描述(中文翻譯)

**保持更新,掌握解決數據分析和機器學習挑戰的專家技術,從複雜項目中獲取見解,提升您的應用程式**

#### 主要特點

- 利用 R 3.5 的最佳特性構建獨立的機器學習 (ML) 系統
- 理解並應用不同的機器學習技術,使用真實世界的範例
- 使用多類別分類、回歸和聚類等方法

#### 書籍描述

隨著 R-zerocost 統計編程環境的日益普及,現在是將機器學習應用於數據的最佳時機。本書將教您使用 R 3.5 中的最新代碼,掌握機器學習的高級技術。您將深入探討監督學習、非監督學習和強化學習算法的各種複雜特性,以設計高效且強大的機器學習模型。

這本新更新的版本包含了涵蓋不同領域的一系列新範例。《使用 R 精通機器學習》首先向您展示如何快速操作數據並為分析做好準備。您將探索簡單和複雜的模型,並理解如何比較它們。您還將學習使用最新的庫支持,如 TensorFlow 和 Keras-R,進行高級計算。此外,您將探索複雜主題,如自然語言處理 (NLP)、時間序列分析和聚類,這將進一步提升您開發應用程式的技能。每一章都將幫助您使用真實世界的範例實現高級機器學習算法。您甚至會接觸到強化學習及其各種用例和模型。在最後幾章中,您將瞥見如何診斷和理解這些黑箱模型。

在本書結束時,您將具備在自己的項目或工作中部署機器學習技術的技能。

#### 您將學到的內容

- 輕鬆準備數據以用於機器學習方法
- 理解如何編寫生產就緒的代碼並將其打包以供使用
- 生成簡單而有效的數據可視化以改善見解
- 精通高級方法,如增強樹和深度神經網絡
- 使用自然語言處理提取與文本相關的見解
- 實現基於樹的分類器,包括隨機森林和增強樹

#### 本書適合誰

本書適合數據科學專業人士、機器學習工程師或任何尋求理想指南以幫助他們實現高級機器學習算法的人。本書將幫助您提升技能,進一步在這個領域發展。具備使用 R 進行機器學習的工作知識是必須的。

#### 目錄

1. 準備和理解數據
2. 線性回歸
3. 邏輯回歸
4. 線性模型中的高級特徵選擇
5. K 最近鄰和支持向量機
6. 基於樹的分類
7. 神經網絡和深度學習
8. 創建集成和多類別方法
9. 聚類分析
10. 主成分分析
11. 關聯分析
12. 時間序列和因果關係
13. 文本挖掘
14. 附錄 A - 創建一個包