Apache Spark for Machine Learning: Build and deploy high-performance big data AI solutions for large-scale clusters
Gowda, Deepak
- 出版商: Packt Publishing
- 出版日期: 2024-11-01
- 售價: $1,660
- 貴賓價: 9.5 折 $1,577
- 語言: 英文
- 頁數: 306
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1804618160
- ISBN-13: 9781804618165
-
相關分類:
Spark、人工智慧、大數據 Big-data、Machine Learning
海外代購書籍(需單獨結帳)
相關主題
商品描述
Develop your data science skills with Apache Spark to solve real-world problems for Fortune 500 companies using scalable algorithms on large cloud computing clusters
Key Features:
- Apply techniques to analyze big data and uncover valuable insights for machine learning
- Learn to use cloud computing clusters for training machine learning models on large datasets
- Discover practical strategies to overcome challenges in model training, deployment, and optimization
- Purchase of the print or Kindle book includes a free PDF eBook
Book Description:
In the world of big data, efficiently processing and analyzing massive datasets for machine learning can be a daunting task. Written by Deepak Gowda, a data scientist with over a decade of experience and 30+ patents, this book provides a hands-on guide to mastering Spark's capabilities for efficient data processing, model building, and optimization. With Deepak's expertise across industries such as supply chain, cybersecurity, and data center infrastructure, he makes complex concepts easy to follow through detailed recipes.
This book takes you through core machine learning concepts, highlighting the advantages of Spark for big data analytics. It covers practical data preprocessing techniques, including feature extraction and transformation, supervised learning methods with detailed chapters on regression and classification, and unsupervised learning through clustering and recommendation systems. You'll also learn to identify frequent patterns in data and discover effective strategies to deploy and optimize your machine learning models. Each chapter features practical coding examples and real-world applications to equip you with the knowledge and skills needed to tackle complex machine learning tasks.
By the end of this book, you'll be ready to handle big data and create advanced machine learning models with Apache Spark.
What You Will Learn:
- Master Apache Spark for efficient, large-scale data processing and analysis
- Understand core machine learning concepts and their applications with Spark
- Implement data preprocessing techniques for feature extraction and transformation
- Explore supervised learning methods - regression and classification algorithms
- Apply unsupervised learning for clustering tasks and recommendation systems
- Discover frequent pattern mining techniques to uncover data trends
Who this book is for:
This book is ideal for data scientists, ML engineers, data engineers, students, and researchers who want to deepen their knowledge of Apache Spark's tools and algorithms. It's a must-have for those struggling to scale models for real-world problems and a valuable resource for preparing for interviews at Fortune 500 companies, focusing on large dataset analysis, model training, and deployment.
Table of Contents
- An Overview of Machine Learning Concepts
- Data Processing with Spark
- Feature Extraction and Transformation
- Building a Regression System
- Building a Classification System
- Building a Clustering System
- Building a Recommendation System
- Mining Frequent Patterns
- Deploying a Model
商品描述(中文翻譯)
發展您的資料科學技能,利用 Apache Spark 解決財富 500 強公司的實際問題,使用可擴展的演算法在大型雲端計算叢集上進行處理。
主要特色:
- 應用技術分析大數據,挖掘機器學習的寶貴見解
- 學習如何使用雲端計算叢集在大型資料集上訓練機器學習模型
- 發現克服模型訓練、部署和優化挑戰的實用策略
- 購買印刷版或 Kindle 書籍可獲得免費 PDF 電子書
書籍描述:
在大數據的世界中,有效處理和分析龐大的資料集以進行機器學習可能是一項艱鉅的任務。本書由擁有十多年經驗和 30 多項專利的資料科學家 Deepak Gowda 撰寫,提供了一本實用指南,幫助您掌握 Spark 在高效資料處理、模型建立和優化方面的能力。Deepak 在供應鏈、網路安全和資料中心基礎設施等行業的專業知識,使得複雜的概念透過詳細的食譜變得易於理解。
本書將帶您了解核心機器學習概念,強調 Spark 在大數據分析中的優勢。內容涵蓋實用的資料預處理技術,包括特徵提取和轉換、詳細介紹回歸和分類的監督學習方法,以及透過聚類和推薦系統進行的非監督學習。您還將學習如何識別資料中的頻繁模式,並發現有效的策略來部署和優化您的機器學習模型。每一章都包含實用的程式碼範例和實際應用,幫助您掌握應對複雜機器學習任務所需的知識和技能。
在本書結束時,您將能夠處理大數據並使用 Apache Spark 創建先進的機器學習模型。
您將學到的內容:
- 精通 Apache Spark 以進行高效的大規模資料處理和分析
- 理解核心機器學習概念及其在 Spark 中的應用
- 實施資料預處理技術以進行特徵提取和轉換
- 探索監督學習方法 - 回歸和分類演算法
- 應用非監督學習進行聚類任務和推薦系統
- 發現頻繁模式挖掘技術以揭示資料趨勢
本書適合對象:
本書非常適合資料科學家、機器學習工程師、資料工程師、學生和研究人員,想要深入了解 Apache Spark 的工具和演算法。對於那些在現實問題中努力擴展模型的人來說,這是一本必備的書籍,也是準備面試財富 500 強公司的寶貴資源,重點在於大型資料集分析、模型訓練和部署。
目錄:
- 機器學習概念概述
- 使用 Spark 進行資料處理
- 特徵提取和轉換
- 建立回歸系統
- 建立分類系統
- 建立聚類系統
- 建立推薦系統
- 挖掘頻繁模式
- 部署模型