Exploration and Analysis of DNA Microarray and Protein Array Data
Dhammika Amaratunga, Javier Cabrera
- 出版商: Wiley
- 出版日期: 2003-10-21
- 售價: $893
- 語言: 英文
- 頁數: 272
- 裝訂: Hardcover
- ISBN: 0471273988
- ISBN-13: 9780471273981
下單後立即進貨 (約5~7天)
買這商品的人也買了...
-
$580$458 -
$380$323 -
$490$417 -
$680$612 -
$440$374 -
$650$553 -
$780$741 -
$590$466 -
$550$435 -
$550$435 -
$720$569 -
$880$792 -
$720$569 -
$1,600$1,568 -
$720$569 -
$480$379 -
$490$417 -
$320$272 -
$760$600 -
$580$458 -
$580$458 -
$680$646 -
$490$382 -
$450$351 -
$550$495
相關主題
商品描述
Summary
A cutting-edge guide to the analysis of DNA microarray data
Genomics is one of the major scientific revolutions of this century, and the use of microarrays to rapidly analyze numerous DNA samples has enabled scientists to make sense of mountains of genomic data through statistical analysis. Today, microarrays are being used in biomedical research to study such vital areas as a drug’s therapeutic value–or toxicity–and cancer-spreading patterns of gene activity.
Exploration and Analysis of DNA Microarray and Protein Array Data answers the need for a comprehensive, cutting-edge overview of this important and emerging field. The authors, seasoned researchers with extensive experience in both industry and academia, effectively outline all phases of this revolutionary analytical technique, from the preprocessing to the analysis stage.
Highlights of the text include:
- A review of basic molecular biology, followed by an introduction to microarrays and their preparation
- Chapters on processing scanned images and preprocessing microarray data
- Methods for identifying differentially expressed genes in comparative microarray experiments
- Discussions of gene and sample clustering and class prediction
- Extension of analysis methods to protein array data
Numerous exercises for self-study as well as data sets and a useful collection of computational tools on the authors’ Web site make this important text a valuable resource for both students and professionals in the field.
Table of Contents
Preface.
1 A Brief Introduction.
1.1 A Note on Exploratory Data Analysis.
1.2 Computing Considerations and Software.
1.3 A Brief Outline of the Book.
2 Genomics Basics.
2.1 Genes.
2.2 DNA.
2.3 Gene Expression.
2.4 Hybridization Assays and Other Laboratory Techniques.
2.5 The Human Genome.
2.6 Genome Variations and Their Consequences.
2.7 Genomics.
2.8 The Role of Genomics in Pharmaceutical Research.
2.9 Proteins.
2.10 Bioinformatics.
Supplementary Reading.
Exercises.
3 Microarrays.
3.1 Types of Microarray Experiments.
3.1.1 Experiment Type 1: Tissue-Specific Gene Expression.
3.1.2 Experiment Type 2: Developmental Genetics.
3.1.3 Experiment Type 3: Genetic Diseases.
3.1.4 Experiment Type 4: Complex Diseases.
3.1.5 Experiment Type 5: Pharmacological Agents.
3.1.6 Experiment Type 6: Plant Breeding.
3.1.7 Experiment Type 7: Environmental Monitoring.
3.2 A Very Simple Hypothetical Microarray Experiment.
3.3 A Typical Microarray Experiment.
3.3.1 Microarray Preparation.
3.3.2 Sample Preparation.
3.3.3 The Hybridization Step.
3.3.4 Scanning the Microarray.
3.3.5 Interpreting the Scanned Image.
3.4 Multichannel cDNA Microarrays.
3.5 Oligonucleotide Arrays.
3.6 Bead-Based Arrays.
3.7 Confirmation of Microarray Results.
Supplementary Reading and Electronic References.
Exercises.
4 Processing the Scanned Image.
4.1 Converting the Scanned Image to the Spotted Image.
4.1.1 Gridding.
4.1.2 Segmentation.
4.1.3 Quantification.
4.2 Quality Assessment.
4.2.1 Visualizing the Spotted Image.
4.2.2 Numerical Evaluation of Array Quality.
4.2.3 Spatial Problems.
4.2.4 Spatial Randomness.
4.2.5 Quality Control of Arrays.
4.2.6 Assessment of Spot Quality.
4.3 Adjusting for Background.
4.3.1 Estimating the Background.
4.3.2 Adjusting for the Estimated Background.
4.4 Expression Level Calculation for Two-Channel cDNA Microarrays.
4.5 Expression Level Calculation for Oligonucleotide Arrays.
4.5.1 The Average Difference.
4.5.2 A Weighted Average Difference.
4.5.3 Perfect Matches Only.
4.5.4 Background Adjustment Approach.
4.5.5 Model-Based Approach.
4.5.6 Absent-Present Calls.
Supplementary Reading.
Exercises.
5 Preprocessing Microarray Data.
5.1 Logarithmic Transformation.
5.2 Variance Stabilizing Transformations.
5.3 Sources of Bias.
5.4 Normalization.
5.5 Intensity-Dependent Normalization.
5.5.1 Smooth Function Normalization.
5.5.2 Quantile Normalization.
5.5.3 Normalization of Oligonucleotide Arrays.
5.5.4 Normalization of Two-Channel Arrays.
5.5.5 Spatial Normalization.
5.5.6 Stagewise Normalization.
5.6 Judging the Success of a Normalization.
5.7 Outlier Identification.
5.7.1 Nonresistant Rules for Outlier Identification.
5.7.2 Resistant Rules for Outlier Identification.
5.8 Assessing Replicate Array Quality.
Exercises.
6 Summarization.
6.1 Replication.
6.2 Technical Replicates.
6.3 Biological Replicates.
6.4 Experiments with Both Technical and Biological Replicates.
6.5 Multiple Oligonucleotide Arrays.
6.6 Estimating Fold Change in Two-Channel Experiments.
6.7 Bayes Estimation of Fold Change.
Exercises.
7 Two-Group Comparative Experiments.
7.1 Basics of Statistical Hypothesis Testing.
7.2 Fold Changes.
7.3 The Two-Sample t Test.
7.4 Diagnostic Checks.
7.5 Robust t Tests.
7.6 Randomization Tests.
7.7 The Mann–Whitney–Wilcoxon Rank Sum Test.
7.8 Multiplicity.
7.8.1 A Pragmatic Approach to the Issue of Multiplicity.
7.8.2 Simple Multiplicity Adjustments.
7.8.3 Sequential Multiplicity Adjustments.
7.9 The False Discovery Rate.
7.9.1 The Positive False Discovery Rate.
7.10 Small Variance-Adjusted t Tests and SAM.
7.10.1 Modifying the t Statistic.
7.10.2 Assesing Significance with the SAM t Statistic.
7.10.3 Strategies for Using SAM.
7.10.4 An Empirical Bayes Framework.
7.10.5 Understanding the SAM Adjustment.
7.11 Conditional t.
7.12 Borrowing Strength across Genes.
7.12.1 Simple Methods.
7.12.2 A Bayesian Model.
7.13 Two-Channel Experiments.
7.13.1 The Paired Sample t Test and SAM.
7.13.2 Borrowing Strength via Hierarchical Modeling.
Supplementary Reading.
Exercises.
8 Model-Based Inference and Experimental Design Considerations.
8.1 The F Test.
8.2 The Basic Linear Model.
8.3 Fitting the Model in Two Stages.
8.4 Multichannel Experiments.
8.5 Experimental Design Considerations.
8.5.1 Comparing Two Varieties with Two-Channel Microarrays.
8.5.2 Comparing Multiple Varieties with Two-Channel Microarrays.
8.5.3 Single-Channel Microarray Experiments.
8.6 Miscellaneous Issues.
Supplementary Reading.
Exercises.
9 Pattern Discovery.
9.1 Initial Considerations.
9.2 Cluster Analysis.
9.2.1 Dissimilarity Measures and Similarity Measures.
9.2.2 Guilt by Association.
9.2.3 Hierarchical Clustering.
9.2.4 Partitioning Methods.
9.2.5 Model-Based Clustering.
9.2.6 Chinese Restaurant Clustering.
9.2.7 Discussion.
9.3 Seeking Patterns Visually.
9.3.1 Principal Components Analysis.
9.3.2 Factor Analysis.
9.3.3 Biplots.
9.3.4 Spectral Map Analysis.
9.3.5 Multidimensional Scaling.
9.3.6 Projection Pursuit.
9.3.7 Data Visualization with the Grand Tour and Projection Pursuit.
9.4 Two-Way Clustering.
9.4.1 Block Clustering.
9.4.2 Gene Shaving.
9.4.3 The Plaid Model.
Software Notes.
Supplementary Reading.
Exercises.
10 Class Prediction.
10.1 Initial Considerations.
10.1.1 Misclassification Rates.
10.1.2 Reducing the Number of Classifiers.
10.2 Linear Discriminant Analysis.
10.3 Extensions of Fisher’s LDA.
10.4 Nearest Neighbors.
10.5 Recursive Partitioning.
10.5.1 Classification Trees.
10.5.2 Activity Region Finding.
10.6 Neural Networks.
10.7 Support Vector Machines.
10.8 Integration of Genomic Information.
10.8.1 Integration of Gene Expression Data and Molecular Structure Data.
10.8.2 Pathway Inference.
Software Notes.
Supplementary Reading.
Exercises.
11 Protein Arrays.
11.1 Introduction.
11.2 Protein Array Experiments.
11.3 Special Issues with Protein Arrays.
11.4 Analysis.
11.5 Using Antibody Antigen Arrays to Measure Protein Concentrations.
Exercises.
References.
Author Index.
Subject Index.
商品描述(中文翻譯)
摘要
《DNA微陣列和蛋白質陣列數據的探索和分析》是一本關於DNA微陣列數據分析的尖端指南。基因組學是本世紀的一項重大科學革命,而使用微陣列快速分析大量DNA樣本使科學家能夠通過統計分析理解大量基因組數據。如今,微陣列在生物醫學研究中被用於研究藥物的治療價值或毒性以及基因活性的癌症擴散模式等重要領域。
《DNA微陣列和蛋白質陣列數據的探索和分析》回答了對這一重要且新興領域的全面、尖端的概述的需求。作者是在工業和學術界都有豐富經驗的經驗豐富的研究人員,他們有效地概述了這一革命性分析技術的所有階段,從預處理到分析階段。
本書的亮點包括:
- 對基本分子生物學的回顧,然後介紹微陣列及其製備
- 關於處理掃描圖像和預處理微陣列數據的章節
- 在比較微陣列實驗中識別差異表達基因的方法
- 關於基因和樣本聚類和類別預測的討論
- 將分析方法擴展到蛋白質陣列數據
本書還提供了大量的自學練習題,以及作者網站上的數據集和有用的計算工具,使這本重要的教材成為該領域的學生和專業人士的寶貴資源。
目錄
前言
1 簡介
1.1 探索性數據分析的注意事項
1.2 計算考慮因素和軟件
1.3 本書簡要概述
2 基因組學基礎知識
2.1 基因
2.2 DNA
2.3 基因表達
2.4 杂交分析和其他實驗室技術
2.5 人類基因組
2.6 基因組變異及其後果
2.7 基因組學
2.8 基因組在藥物研究中的作用
2.9 蛋白質
2.10 生物信息學
附錄閱讀材料
練習題
3 微陣列
3.1 微陣列實驗類型
3.1.1 實驗類型1:組織特異性基因表達
3.1.2 實驗類型2:發育遺傳學
3.1.3 實驗類型3:遺傳疾病
3.1.4 實驗類型4:複雜疾病
3.1.5 實驗類型5:藥物
3.1.6 實驗類型6:植物育種
3.1.7 實驗類型7:環境監測
3.2 一個非常簡單的假設性微陣列實驗
3.3 典型的微陣列實驗
3.3.1 微陣列製備
3.3.2 樣本準備
3.3.3 杂交步驟
3.3.4 掃描微陣列
3.3.5 解讀掃描圖像
3.4 多通道cDNA微陣列
3.5 寡核苷酸陣列
3.6 珠狀陣列
3.7 確認微陣列結果
附錄閱讀材料和電子參考資料
練習題
4 處理掃描圖像
4.1 將掃描圖像轉換為點陣圖像
4.1.1 網格化
4.1.2 分割
4.1.3 量化
4.2 質量評估
4.2.1 可視化點陣圖像
4.2.2 數值評估陣列質量
4.2.3 空間問題
4.2.4 空間隨機性
4.2.5 質量控制