Machine Learning in Image Steganalysis (Hardcover)
暫譯: 圖像隱寫分析中的機器學習 (精裝版)

Hans Georg Schaathun

  • 出版商: IEEE
  • 出版日期: 2012-10-04
  • 售價: $4,170
  • 貴賓價: 9.5$3,962
  • 語言: 英文
  • 頁數: 296
  • 裝訂: Hardcover
  • ISBN: 0470663057
  • ISBN-13: 9780470663059
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

商品描述

Steganography is the art of communicating a secret message, hiding the very existence of a secret message. This is typically done by hiding the message within a non-sensitive document. Steganalysis is the art and science of detecting such hidden messages.  The task in steganalysis is to take an object (communication) and classify it as either a steganogram or a clean document. Most recent solutions apply classification algorithms from machine learning and pattern recognition, which tackle problems too complex for analytical solution by teaching computers to learn from empirical data. 

Part 1of the book is an introduction to steganalysis as part of the wider trend of multimedia forensics, as well as a practical tutorial on machine learning in this context. Part 2 is a survey of a wide range of feature vectors proposed for steganalysis with performance tests and comparisons. Part 3 is an in-depth study of machine learning techniques and classifier algorithms, and presents a critical assessment of the experimental methodology and applications in steganalysis.

Key features: 

  • Serves as a tutorial on the topic of steganalysis with brief introductions to much of the basic theory provided, and also presents a survey of the latest research.
  • Develops and formalises the application of machine learning in steganalysis; with much of the understanding of machine learning to be gained from this book adaptable for future study of machine learning in other applications. 
  • Contains Python programs and algorithms to allow the reader to modify and reproduce outcomes discussed in the book.
  • Includes companion software available from the author’s website.

商品描述(中文翻譯)

隱寫術是傳達秘密訊息的藝術,隱藏秘密訊息的存在。這通常是通過將訊息隱藏在非敏感文件中來實現的。隱寫分析是檢測這些隱藏訊息的藝術和科學。隱寫分析的任務是將一個對象(通信)分類為隱寫圖或乾淨文件。最近的解決方案應用了來自機器學習和模式識別的分類算法,這些算法通過教導計算機從經驗數據中學習來解決過於複雜的問題,無法用分析方法解決。

本書的第一部分是隱寫分析的介紹,作為多媒體取證的更廣泛趨勢的一部分,並提供了在此背景下的機器學習實用教程。第二部分是對為隱寫分析提出的各種特徵向量的調查,並進行性能測試和比較。第三部分是對機器學習技術和分類算法的深入研究,並對隱寫分析中的實驗方法和應用進行了批判性評估。

主要特點:


  • 作為隱寫分析主題的教程,提供了許多基本理論的簡要介紹,並且還呈現了最新研究的調查。

  • 發展並正式化機器學習在隱寫分析中的應用;從本書中獲得的機器學習理解可適用於未來在其他應用中學習機器學習。

  • 包含Python程序和算法,允許讀者修改和重現書中討論的結果。

  • 包括可從作者網站獲得的伴隨軟體。

最後瀏覽商品 (20)