Nonlinear Time Series: Theory, Methods and Applications with R Examples (Chapman & Hall/CRC Texts in Statistical Science)
暫譯: 非線性時間序列:理論、方法與應用(含 R 範例)(Chapman & Hall/CRC 統計科學系列)
Randal Douc, Eric Moulines, David Stoffer
- 出版商: Chapman and Hall/CRC
- 出版日期: 2014-01-06
- 售價: $4,200
- 貴賓價: 9.5 折 $3,990
- 語言: 英文
- 頁數: 551
- 裝訂: Hardcover
- ISBN: 1466502258
- ISBN-13: 9781466502253
-
相關分類:
R 語言
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,568$1,485 -
$3,780$3,591 -
$5,130$4,874 -
$3,500$3,325 -
$1,260$1,235 -
$2,980$2,831 -
$1,600$1,568 -
$1,970$1,872 -
$1,460Introduction to the Theory of Computation, 3/e (Hardcover)
-
$3,780$3,591 -
$1,800$1,710 -
$2,250$2,138 -
$7,290$6,926 -
$1,680$1,646 -
$1,980$1,940 -
$1,450Introduction to Complex Variables and Applications (Paperback)
-
$2,690$2,556 -
$2,850$2,708 -
$2,050$1,948 -
$7,070$6,717 -
$800$784 -
$2,550$2,423
商品描述
Designed for researchers and students, Nonlinear Times Series: Theory, Methods and Applications with R Examples familiarizes readers with the principles behind nonlinear time series models―without overwhelming them with difficult mathematical developments. By focusing on basic principles and theory, the authors give readers the background required to craft their own stochastic models, numerical methods, and software. They will also be able to assess the advantages and disadvantages of different approaches, and thus be able to choose the right methods for their purposes.
The first part can be seen as a crash course on "classical" time series, with a special emphasis on linear state space models and detailed coverage of random coefficient autoregressions, both ARCH and GARCH models. The second part introduces Markov chains, discussing stability, the existence of a stationary distribution, ergodicity, limit theorems, and statistical inference. The book concludes with a self-contained account on nonlinear state space and sequential Monte Carlo methods. An elementary introduction to nonlinear state space modeling and sequential Monte Carlo, this section touches on current topics, from the theory of statistical inference to advanced computational methods.
The book can be used as a support to an advanced course on these methods, or an introduction to this field before studying more specialized texts. Several chapters highlight recent developments such as explicit rate of convergence of Markov chains and sequential Monte Carlo techniques. And while the chapters are organized in a logical progression, the three parts can be studied independently.
Statistics is not a spectator sport, so the book contains more than 200 exercises to challenge readers. These problems strengthen intellectual muscles strained by the introduction of new theory and go on to extend the theory in significant ways. The book helps readers hone their skills in nonlinear time series analysis and their applications.
商品描述(中文翻譯)
本書《非線性時間序列:理論、方法與 R 實例》專為研究人員和學生設計,使讀者熟悉非線性時間序列模型背後的原理,而不會因為複雜的數學推導而感到困惑。作者專注於基本原則和理論,提供讀者所需的背景,以便他們能夠自行構建隨機模型、數值方法和軟體。他們還能夠評估不同方法的優缺點,從而選擇適合其目的的正確方法。
第一部分可以視為“經典”時間序列的速成課程,特別強調線性狀態空間模型,並詳細介紹隨機係數自迴歸模型,包括 ARCH 和 GARCH 模型。第二部分介紹馬可夫鏈,討論穩定性、平穩分佈的存在、遍歷性、極限定理和統計推斷。本書最後以非線性狀態空間和序列蒙地卡羅方法的獨立說明作結。這一部分對非線性狀態空間建模和序列蒙地卡羅的基本介紹,涉及當前主題,從統計推斷理論到先進的計算方法。
本書可作為這些方法的進階課程的輔助教材,或在學習更專業的文本之前對該領域的介紹。幾個章節突出了最近的發展,例如馬可夫鏈的顯式收斂速率和序列蒙地卡羅技術。雖然章節的組織邏輯性強,但三個部分可以獨立學習。
統計學不是一項觀賞性運動,因此本書包含超過 200 道練習題來挑戰讀者。這些問題加強了因引入新理論而受到考驗的智力,並在重要方面擴展了理論。本書幫助讀者磨練他們在非線性時間序列分析及其應用方面的技能。