Probabilistic Machine Learning for Civil Engineers
暫譯: 土木工程師的機率機器學習

Goulet, James-A

  • 出版商: Summit Valley Press
  • 出版日期: 2020-04-14
  • 售價: $2,160
  • 貴賓價: 9.5$2,052
  • 語言: 英文
  • 頁數: 304
  • 裝訂: Quality Paper - also called trade paper
  • ISBN: 0262538709
  • ISBN-13: 9780262538701
  • 相關分類: Machine Learning
  • 海外代購書籍(需單獨結帳)

買這商品的人也買了...

商品描述

An introduction to key concepts and techniques in probabilistic machine learning for civil engineering students and professionals; with many step-by-step examples, illustrations, and exercises.

This book introduces probabilistic machine learning concepts to civil engineering students and professionals, presenting key approaches and techniques in a way that is accessible to readers without a specialized background in statistics or computer science. It presents different methods clearly and directly, through step-by-step examples, illustrations, and exercises. Having mastered the material, readers will be able to understand the more advanced machine learning literature from which this book draws.

The book presents key approaches in the three subfields of probabilistic machine learning: supervised learning, unsupervised learning, and reinforcement learning. It first covers the background knowledge required to understand machine learning, including linear algebra and probability theory. It goes on to present Bayesian estimation, which is behind the formulation of both supervised and unsupervised learning methods, and Markov chain Monte Carlo methods, which enable Bayesian estimation in certain complex cases. The book then covers approaches associated with supervised learning, including regression methods and classification methods, and notions associated with unsupervised learning, including clustering, dimensionality reduction, Bayesian networks, state-space models, and model calibration. Finally, the book introduces fundamental concepts of rational decisions in uncertain contexts and rational decision-making in uncertain and sequential contexts. Building on this, the book describes the basics of reinforcement learning, whereby a virtual agent learns how to make optimal decisions through trial and error while interacting with its environment.

商品描述(中文翻譯)

為土木工程學生和專業人士介紹機率機器學習的關鍵概念和技術;包含許多逐步示例、插圖和練習。

本書向土木工程學生和專業人士介紹機率機器學習的概念,以易於理解的方式呈現關鍵方法和技術,適合沒有統計或計算機科學專業背景的讀者。它通過逐步示例、插圖和練習清晰而直接地呈現不同的方法。掌握這些材料後,讀者將能夠理解本書所引用的更高級的機器學習文獻。

本書介紹了機率機器學習三個子領域的關鍵方法:監督學習、非監督學習和強化學習。首先涵蓋理解機器學習所需的背景知識,包括線性代數和機率論。接著介紹貝葉斯估計,這是監督學習和非監督學習方法的基礎,並介紹馬可夫鏈蒙地卡羅方法,這些方法在某些複雜情況下能夠實現貝葉斯估計。然後,本書涵蓋與監督學習相關的方法,包括迴歸方法和分類方法,以及與非監督學習相關的概念,包括聚類、降維、貝葉斯網絡、狀態空間模型和模型校準。最後,本書介紹在不確定情境下的理性決策基本概念,以及在不確定和序列情境下的理性決策。基於此,本書描述強化學習的基本概念,虛擬代理如何通過與環境互動進行試錯學習以做出最佳決策。