Bayesian Programming (Hardcover)
暫譯: 貝葉斯程式設計 (精裝版)
Pierre Bessiere, Emmanuel Mazer, Juan Manuel Ahuactzin, Kamel Mekhnacha
- 出版商: CRC
- 出版日期: 2013-12-20
- 售價: $2,700
- 貴賓價: 9.5 折 $2,565
- 語言: 英文
- 頁數: 380
- 裝訂: Hardcover
- ISBN: 1439880328
- ISBN-13: 9781439880326
-
相關分類:
機率統計學 Probability-and-statistics
立即出貨 (庫存=1)
買這商品的人也買了...
-
$880$695 -
$450$383 -
$580$493 -
$590$502 -
$400$380 -
$320$250 -
$680$537 -
$780$616 -
$550$550 -
$590$502 -
$260$221 -
$780$616 -
$360$284 -
$450$383 -
$490$387 -
$690$538 -
$280$218 -
$450$356 -
$560$442 -
$180$142 -
$540$459 -
$420$357 -
$520$411 -
$620$484 -
$480$379
商品描述
Probability as an Alternative to Boolean Logic
While logic is the mathematical foundation of rational reasoning and the fundamental principle of computing, it is restricted to problems where information is both complete and certain. However, many real-world problems, from financial investments to email filtering, are incomplete or uncertain in nature. Probability theory and Bayesian computing together provide an alternative framework to deal with incomplete and uncertain data.
Decision-Making Tools and Methods for Incomplete and Uncertain Data
Emphasizing probability as an alternative to Boolean logic, Bayesian Programming covers new methods to build probabilistic programs for real-world applications. Written by the team who designed and implemented an efficient probabilistic inference engine to interpret Bayesian programs, the book offers many Python examples that are also available on a supplementary website together with an interpreter that allows readers to experiment with this new approach to programming.
Principles and Modeling
Only requiring a basic foundation in mathematics, the first two parts of the book present a new methodology for building subjective probabilistic models. The authors introduce the principles of Bayesian programming and discuss good practices for probabilistic modeling. Numerous simple examples highlight the application of Bayesian modeling in different fields.
Formalism and Algorithms
The third part synthesizes existing work on Bayesian inference algorithms since an efficient Bayesian inference engine is needed to automate the probabilistic calculus in Bayesian programs. Many bibliographic references are included for readers who would like more details on the formalism of Bayesian programming, the main probabilistic models, general purpose algorithms for Bayesian inference, and learning problems.
FAQs
Along with a glossary, the fourth part contains answers to frequently asked questions. The authors compare Bayesian programming and possibility theories, discuss the computational complexity of Bayesian inference, cover the irreducibility of incompleteness, and address the subjectivist versus objectivist epistemology of probability.
The First Steps toward a Bayesian Computer
A new modeling methodology, new inference algorithms, new programming languages, and new hardware are all needed to create a complete Bayesian computing framework. Focusing on the methodology and algorithms, this book describes the first steps toward reaching that goal. It encourages readers to explore emerging areas, such as bio-inspired computing, and develop new programming languages and hardware architectures.
商品描述(中文翻譯)
機率作為布林邏輯的替代方案
雖然邏輯是理性推理的數學基礎,也是計算的基本原則,但它僅限於資訊既完整又確定的問題。然而,許多現實世界的問題,從金融投資到電子郵件過濾,都是不完整或不確定的性質。機率論和貝葉斯計算共同提供了一個替代框架,以處理不完整和不確定的數據。
針對不完整和不確定數據的決策工具和方法
強調機率作為布林邏輯的替代方案,貝葉斯程式設計涵蓋了為現實世界應用構建機率程式的新方法。這本書由設計和實現高效機率推斷引擎以解釋貝葉斯程式的團隊撰寫,提供了許多 Python 範例,這些範例也可以在補充網站上找到,並附有一個解釋器,讓讀者能夠實驗這種新的程式設計方法。
原則與建模
本書的前兩部分僅需具備基本的數學基礎,介紹了一種構建主觀機率模型的新方法。作者介紹了貝葉斯程式設計的原則,並討論了機率建模的良好實踐。許多簡單的範例突顯了貝葉斯建模在不同領域的應用。
形式主義與演算法
第三部分綜合了現有的貝葉斯推斷演算法的研究,因為需要一個高效的貝葉斯推斷引擎來自動化貝葉斯程式中的機率計算。對於希望獲得更多有關貝葉斯程式形式主義、主要機率模型、通用貝葉斯推斷演算法和學習問題的詳細資訊的讀者,書中包含了許多參考文獻。
常見問題解答
第四部分除了詞彙表外,還包含了對常見問題的回答。作者比較了貝葉斯程式設計和可能性理論,討論了貝葉斯推斷的計算複雜性,涵蓋了不完整性的不可約性,並探討了機率的主觀主義與客觀主義認識論。
邁向貝葉斯計算機的第一步
創建一個完整的貝葉斯計算框架需要新的建模方法、新的推斷演算法、新的程式語言和新的硬體。這本書專注於方法論和演算法,描述了邁向該目標的第一步。它鼓勵讀者探索新興領域,如生物啟發計算,並開發新的程式語言和硬體架構。