Practical Probabilistic Programming (Paperback)
暫譯: 實用的機率程式設計 (平裝本)

Avi Pfeffer

  • 出版商: Manning
  • 出版日期: 2016-04-07
  • 定價: $2,200
  • 售價: 9.0$1,980
  • 語言: 英文
  • 頁數: 456
  • 裝訂: Paperback
  • ISBN: 1617292338
  • ISBN-13: 9781617292330
  • 相關翻譯: 概率編程實戰 (簡中版)
  • 立即出貨 (庫存 < 3)

買這商品的人也買了...

商品描述

Data accumulated about customers, products, and website users can not only help interpret the past, it can help predict the future! Probabilistic programming is a programming paradigm in which code models are used to draw probabilistic inferences from data. By applying specialized algorithms, programs assign degrees of probability to conclusions and make it possible to forecast future events like sales trends, computer system failures, experimental outcomes, and other critical concerns.

Practical Probabilistic Programming explains how to use the PP paradigm to model application domains and express those probabilistic models in code. It shows how to use the Figaro language to build a spam filter and apply Bayesian and Markov networks to diagnose computer system data problems and recover digital images. Then it dives into the world of probabilistic inference, where algorithms help turn the extended prediction of social media usage into a science. The book covers functional-style programming for text analysis and using object-oriented models to predict social phenomena like the spread of tweets, and using open universe models to model real-life social media usage. It also teaches the principles of algorithms such as belief propagation and Markov chain Monte Carlo. The book closes out with modeling dynamic systems by using a product cycle as its main example and explains how probabilistic models can help in the decision-making process for an ad campaign.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

商品描述(中文翻譯)

資料的累積關於客戶、產品和網站使用者,不僅能幫助解釋過去,還能幫助預測未來!機率程式設計是一種程式設計範式,其中使用程式碼模型從資料中進行機率推斷。透過應用專門的演算法,程式能夠為結論分配機率程度,並使得預測未來事件如銷售趨勢、計算機系統故障、實驗結果及其他關鍵問題成為可能。

《實用機率程式設計》解釋了如何使用PP範式來建模應用領域並將這些機率模型表達為程式碼。它展示了如何使用Figaro語言來建立垃圾郵件過濾器,並應用貝葉斯(Bayesian)和馬可夫(Markov)網絡來診斷計算機系統資料問題和恢復數位影像。接著,它深入探討機率推斷的世界,演算法幫助將社交媒體使用的擴展預測變成一門科學。這本書涵蓋了用於文本分析的函數式程式設計,以及使用物件導向模型來預測社會現象,如推文的擴散,並使用開放宇宙模型來模擬現實生活中的社交媒體使用。它還教授了如信念傳播(belief propagation)和馬可夫鏈蒙地卡羅(Markov chain Monte Carlo)等演算法的原則。這本書最後以產品週期作為主要範例來建模動態系統,並解釋了機率模型如何在廣告活動的決策過程中提供幫助。

購買印刷版書籍可獲得Manning Publications提供的免費PDF、Kindle和ePub格式的電子書。