Hands-On Machine Learning with C#: Building smarter, speedy and reliable data-intensive applications using machine learning
暫譯: 使用 C# 的實作機器學習:構建更智能、快速且可靠的數據密集型應用程式
Matt R. Cole
- 出版商: Packt Publishing
- 出版日期: 2018-05-24
- 售價: $1,380
- 貴賓價: 9.5 折 $1,311
- 語言: 英文
- 頁數: 274
- 裝訂: Paperback
- ISBN: 1788994949
- ISBN-13: 9781788994941
-
相關分類:
C#、Machine Learning
立即出貨 (庫存=1)
買這商品的人也買了...
-
$1,820Assembly Language Step-by-Step: Programming with Linux, 3/e (Paperback)
-
$620$558 -
$450$356 -
$480$379 -
$650$553 -
$420$332 -
$580$493 -
$1,520$1,444 -
$1,380$1,311 -
$1,750$1,663 -
$390$308 -
$420$332 -
$880$695 -
$620$484 -
$580$458 -
$1,200$948 -
$580$452 -
$594$564 -
$780$663 -
$780$608 -
$1,758$1,665 -
$600$468 -
$650$514 -
$650$429 -
$2,840$2,698
相關主題
商品描述
Explore Supervised, Unsupervised Learning Techniques and Bring Smart Features to your Applications
Key Features
- Leverage Machine Learning techniques to build smart, predictive and real-world applications
- Accord.Net machine learning framework for reinforcement learning
- Machine learning techniques using various libraries-Accord, Numl, Encog
Book Description
In our daily work which is predominantly Information Technology, the necessity of machine learning is everywhere and demanded by all developers, programmers, and analysts. But why C# for machine learning? The answer is most of the Microsoft enterprise applications are written in C# such as Visual Studio, SQL Server, Photoshop and various mobile applications, Unity platform, Microsoft Azure, StackOverflow and so on.
This book develops the intuitive understanding of various concepts, techniques of machine learning and various available machine learning tools through which they can add intelligent features such as sentiment detection, speech recognition, language understanding, smart search and so on to C# and .NET applications.
Using this book, you will implement supervised and unsupervised learning algorithms and will be getting well equipped to create better predictive models. You will learn numerous techniques and algorithms right from a simple linear regression, decision trees, SVM to advanced concepts such as artificial neural networks, autoencoders, and reinforcement learning.
By the end of this book, the readers will develop a machine learning mindset and can leverage the tools, techniques, and packages of C# in building smart, predictive and real-world business applications
What you will learn
- Learn how to parameterize a probabilistic problem
- Use Naïve Bayes to visually plot and analyze data
- Plot a text-based representation of a decision tree using numl
- Use the Accord.Net machine learning framework for associative rule-based learning
- Develop machine learning algorithms utilizing fuzzy logic
- Explore Support Vector Machines for image recognition
- Understand Dynamic Time Warping for sequence recognition
Who This Book Is For
This book is meant for all developers and programmers working on a range of platforms from .NET and Windows to mobile devices. Basic knowledge of statistics is required.
商品描述(中文翻譯)
**探索監督式與非監督式學習技術,為您的應用程式帶來智慧功能**
### 主要特點
- 利用機器學習技術構建智慧、預測性和現實世界的應用程式
- Accord.Net 機器學習框架用於強化學習
- 使用各種庫的機器學習技術 - Accord、Numl、Encog
### 書籍描述
在我們的日常工作中,資訊科技無處不在,機器學習的需求也被所有開發者、程式設計師和分析師所要求。但為什麼選擇 C# 進行機器學習?答案是大多數微軟企業應用程式都是用 C# 編寫的,例如 Visual Studio、SQL Server、Photoshop 以及各種行動應用程式、Unity 平台、Microsoft Azure、StackOverflow 等等。
本書旨在通過各種機器學習概念、技術和可用的機器學習工具,幫助讀者直觀理解,從而能夠為 C# 和 .NET 應用程式添加智慧功能,如情感檢測、語音識別、語言理解、智慧搜尋等。
通過本書,您將實現監督式和非監督式學習演算法,並能夠更好地創建預測模型。您將學習從簡單的線性回歸、決策樹、支持向量機(SVM)到更高級的概念,如人工神經網絡、自編碼器和強化學習的眾多技術和演算法。
在本書結束時,讀者將培養出機器學習的思維方式,並能夠利用 C# 的工具、技術和套件來構建智慧、預測性和現實世界的商業應用程式。
### 您將學到什麼
- 學習如何參數化一個概率問題
- 使用 Naïve Bayes 進行數據的可視化繪圖和分析
- 使用 numl 繪製決策樹的文本表示
- 使用 Accord.Net 機器學習框架進行關聯規則學習
- 開發利用模糊邏輯的機器學習演算法
- 探索支持向量機(SVM)進行圖像識別
- 理解動態時間扭曲(Dynamic Time Warping)用於序列識別
### 本書適合誰
本書適合所有在 .NET 和 Windows 到行動設備等多種平台上工作的開發者和程式設計師。需要具備基本的統計知識。