Hands-On Unsupervised Learning with Python
暫譯: 實戰無監督學習與 Python
Bonaccorso, Giuseppe
- 出版商: Packt Publishing
- 出版日期: 2019-02-28
- 售價: $2,100
- 貴賓價: 9.5 折 $1,995
- 語言: 英文
- 頁數: 386
- 裝訂: Quality Paper - also called trade paper
- ISBN: 1789348277
- ISBN-13: 9781789348279
-
相關分類:
Python、程式語言
-
相關翻譯:
Python 無監督學習 (Hands-On Unsupervised Learning with Python) (簡中版)
相關主題
商品描述
Key Features
- Explore unsupervised learning with clustering, autoencoders, restricted Boltzmann machines, and more
- Build your own neural network models using modern Python libraries
- Practical examples show you how to implement different machine learning and deep learning techniques
Book Description
Unsupervised learning is about making use of raw, untagged data and applying learning algorithms to it to help a machine predict its outcome. With this book, you will explore the concept of unsupervised learning to cluster large sets of data and analyze them repeatedly until the desired outcome is found using Python.
This book starts with the key differences between supervised, unsupervised, and semi-supervised learning. You will be introduced to the best-used libraries and frameworks from the Python ecosystem and address unsupervised learning in both the machine learning and deep learning domains. You will explore various algorithms, techniques that are used to implement unsupervised learning in real-world use cases. You will learn a variety of unsupervised learning approaches, including randomized optimization, clustering, feature selection and transformation, and information theory. You will get hands-on experience with how neural networks can be employed in unsupervised scenarios. You will also explore the steps involved in building and training a GAN in order to process images.
By the end of this book, you will have learned the art of unsupervised learning for different real-world challenges.
What you will learn
- Use cluster algorithms to identify and optimize natural groups of data
- Explore advanced non-linear and hierarchical clustering in action
- Soft label assignments for fuzzy c-means and Gaussian mixture models
- Detect anomalies through density estimation
- Perform principal component analysis using neural network models
- Create unsupervised models using GANs
Who this book is for
This book is intended for statisticians, data scientists, machine learning developers, and deep learning practitioners who want to build smart applications by implementing key building block unsupervised learning, and master all the new techniques and algorithms offered in machine learning and deep learning using real-world examples. Some prior knowledge of machine learning concepts and statistics is desirable.
商品描述(中文翻譯)
#### 主要特點
- 探索無監督學習,包括聚類、自編碼器、限制玻爾茲曼機等
- 使用現代 Python 函式庫構建自己的神經網絡模型
- 實用範例展示如何實現不同的機器學習和深度學習技術
#### 書籍描述
無監督學習是利用原始的、未標記的數據並將學習算法應用於此,以幫助機器預測其結果。本書將帶您探索無監督學習的概念,以聚類大量數據集並反覆分析,直到找到所需的結果,使用 Python 進行實現。
本書首先介紹監督學習、無監督學習和半監督學習之間的主要差異。您將了解 Python 生態系統中最常用的函式庫和框架,並探討無監督學習在機器學習和深度學習領域的應用。您將探索各種算法和技術,這些技術用於在現實世界的案例中實現無監督學習。您將學習多種無監督學習方法,包括隨機優化、聚類、特徵選擇和轉換,以及信息理論。您將獲得如何在無監督場景中使用神經網絡的實踐經驗。您還將探索構建和訓練生成對抗網絡(GAN)以處理圖像的步驟。
在本書結束時,您將學會無監督學習的藝術,以應對不同的現實挑戰。
#### 您將學到的內容
- 使用聚類算法識別和優化數據的自然群組
- 探索高級非線性和層次聚類的實際應用
- 模糊 c-means 和高斯混合模型的軟標籤分配
- 通過密度估計檢測異常
- 使用神經網絡模型執行主成分分析
- 使用 GAN 創建無監督模型
#### 本書適合誰
本書適合統計學家、數據科學家、機器學習開發者和深度學習實踐者,他們希望通過實施關鍵的無監督學習基礎構建智能應用,並掌握機器學習和深度學習中提供的所有新技術和算法,並使用現實世界的範例進行學習。對機器學習概念和統計的先前知識是可取的。
目錄大綱
- Getting Started with Unsupervised Learning
- Clustering Fundamentals
- Advanced Clustering
- Hierarchical Clustering in Action
- Soft Clustering and Gaussian Mixture Models
- Anomaly Detection
- Dimensionality Reduction and Component Analysis
- Unsupervised Neural Network Models
- Generative Adversarial Networks and SOMs
目錄大綱(中文翻譯)
- Getting Started with Unsupervised Learning
- Clustering Fundamentals
- Advanced Clustering
- Hierarchical Clustering in Action
- Soft Clustering and Gaussian Mixture Models
- Anomaly Detection
- Dimensionality Reduction and Component Analysis
- Unsupervised Neural Network Models
- Generative Adversarial Networks and SOMs